⚝
One Hat Cyber Team
⚝
Your IP:
216.73.216.224
Server IP:
97.74.87.16
Server:
Linux 16.87.74.97.host.secureserver.net 5.14.0-503.38.1.el9_5.x86_64 #1 SMP PREEMPT_DYNAMIC Fri Apr 18 08:52:10 EDT 2025 x86_64
Server Software:
Apache
PHP Version:
8.2.28
Buat File
|
Buat Folder
Eksekusi
Dir :
~
/
usr
/
include
/
c++
/
11
/
experimental
/
bits
/
View File Name :
simd.h
// Definition of the public simd interfaces -*- C++ -*- // Copyright (C) 2020-2021 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation. // You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // <http://www.gnu.org/licenses/>. #ifndef _GLIBCXX_EXPERIMENTAL_SIMD_H #define _GLIBCXX_EXPERIMENTAL_SIMD_H #if __cplusplus >= 201703L #include "simd_detail.h" #include "numeric_traits.h" #include <bit> #include <bitset> #ifdef _GLIBCXX_DEBUG_UB #include <cstdio> // for stderr #endif #include <cstring> #include <functional> #include <iosfwd> #include <utility> #if _GLIBCXX_SIMD_X86INTRIN #include <x86intrin.h> #elif _GLIBCXX_SIMD_HAVE_NEON #pragma GCC diagnostic push // narrowing conversion of '__a' from 'uint64_t' {aka 'long long unsigned int'} to // 'int64x1_t' {aka 'long long int'} [-Wnarrowing] #pragma GCC diagnostic ignored "-Wnarrowing" #include <arm_neon.h> #pragma GCC diagnostic pop #endif /** @ingroup ts_simd * @{ */ /* There are several closely related types, with the following naming * convention: * _Tp: vectorizable (arithmetic) type (or any type) * _TV: __vector_type_t<_Tp, _Np> * _TW: _SimdWrapper<_Tp, _Np> * _TI: __intrinsic_type_t<_Tp, _Np> * _TVT: _VectorTraits<_TV> or _VectorTraits<_TW> * If one additional type is needed use _U instead of _T. * Otherwise use _T\d, _TV\d, _TW\d, TI\d, _TVT\d. * * More naming conventions: * _Ap or _Abi: An ABI tag from the simd_abi namespace * _Ip: often used for integer types with sizeof(_Ip) == sizeof(_Tp), * _IV, _IW as for _TV, _TW * _Np: number of elements (not bytes) * _Bytes: number of bytes * * Variable names: * __k: mask object (vector- or bitmask) */ _GLIBCXX_SIMD_BEGIN_NAMESPACE #if !_GLIBCXX_SIMD_X86INTRIN using __m128 [[__gnu__::__vector_size__(16)]] = float; using __m128d [[__gnu__::__vector_size__(16)]] = double; using __m128i [[__gnu__::__vector_size__(16)]] = long long; using __m256 [[__gnu__::__vector_size__(32)]] = float; using __m256d [[__gnu__::__vector_size__(32)]] = double; using __m256i [[__gnu__::__vector_size__(32)]] = long long; using __m512 [[__gnu__::__vector_size__(64)]] = float; using __m512d [[__gnu__::__vector_size__(64)]] = double; using __m512i [[__gnu__::__vector_size__(64)]] = long long; #endif namespace simd_abi { // simd_abi forward declarations {{{ // implementation details: struct _Scalar; template <int _Np> struct _Fixed; // There are two major ABIs that appear on different architectures. // Both have non-boolean values packed into an N Byte register // -> #elements = N / sizeof(T) // Masks differ: // 1. Use value vector registers for masks (all 0 or all 1) // 2. Use bitmasks (mask registers) with one bit per value in the corresponding // value vector // // Both can be partially used, masking off the rest when doing horizontal // operations or operations that can trap (e.g. FP_INVALID or integer division // by 0). This is encoded as the number of used bytes. template <int _UsedBytes> struct _VecBuiltin; template <int _UsedBytes> struct _VecBltnBtmsk; template <typename _Tp, int _Np> using _VecN = _VecBuiltin<sizeof(_Tp) * _Np>; template <int _UsedBytes = 16> using _Sse = _VecBuiltin<_UsedBytes>; template <int _UsedBytes = 32> using _Avx = _VecBuiltin<_UsedBytes>; template <int _UsedBytes = 64> using _Avx512 = _VecBltnBtmsk<_UsedBytes>; template <int _UsedBytes = 16> using _Neon = _VecBuiltin<_UsedBytes>; // implementation-defined: using __sse = _Sse<>; using __avx = _Avx<>; using __avx512 = _Avx512<>; using __neon = _Neon<>; using __neon128 = _Neon<16>; using __neon64 = _Neon<8>; // standard: template <typename _Tp, size_t _Np, typename...> struct deduce; template <int _Np> using fixed_size = _Fixed<_Np>; using scalar = _Scalar; // }}} } // namespace simd_abi // forward declarations is_simd(_mask), simd(_mask), simd_size {{{ template <typename _Tp> struct is_simd; template <typename _Tp> struct is_simd_mask; template <typename _Tp, typename _Abi> class simd; template <typename _Tp, typename _Abi> class simd_mask; template <typename _Tp, typename _Abi> struct simd_size; // }}} // load/store flags {{{ struct element_aligned_tag { template <typename _Tp, typename _Up = typename _Tp::value_type> static constexpr size_t _S_alignment = alignof(_Up); template <typename _Tp, typename _Up> _GLIBCXX_SIMD_INTRINSIC static constexpr _Up* _S_apply(_Up* __ptr) { return __ptr; } }; struct vector_aligned_tag { template <typename _Tp, typename _Up = typename _Tp::value_type> static constexpr size_t _S_alignment = std::__bit_ceil(sizeof(_Up) * _Tp::size()); template <typename _Tp, typename _Up> _GLIBCXX_SIMD_INTRINSIC static constexpr _Up* _S_apply(_Up* __ptr) { return static_cast<_Up*>(__builtin_assume_aligned(__ptr, _S_alignment<_Tp, _Up>)); } }; template <size_t _Np> struct overaligned_tag { template <typename _Tp, typename _Up = typename _Tp::value_type> static constexpr size_t _S_alignment = _Np; template <typename _Tp, typename _Up> _GLIBCXX_SIMD_INTRINSIC static constexpr _Up* _S_apply(_Up* __ptr) { return static_cast<_Up*>(__builtin_assume_aligned(__ptr, _Np)); } }; inline constexpr element_aligned_tag element_aligned = {}; inline constexpr vector_aligned_tag vector_aligned = {}; template <size_t _Np> inline constexpr overaligned_tag<_Np> overaligned = {}; // }}} template <size_t _Xp> using _SizeConstant = integral_constant<size_t, _Xp>; namespace __detail { struct _Minimum { template <typename _Tp> _GLIBCXX_SIMD_INTRINSIC constexpr _Tp operator()(_Tp __a, _Tp __b) const { using std::min; return min(__a, __b); } }; struct _Maximum { template <typename _Tp> _GLIBCXX_SIMD_INTRINSIC constexpr _Tp operator()(_Tp __a, _Tp __b) const { using std::max; return max(__a, __b); } }; } // namespace __detail // unrolled/pack execution helpers // __execute_n_times{{{ template <typename _Fp, size_t... _I> _GLIBCXX_SIMD_INTRINSIC constexpr void __execute_on_index_sequence(_Fp&& __f, index_sequence<_I...>) { ((void)__f(_SizeConstant<_I>()), ...); } template <typename _Fp> _GLIBCXX_SIMD_INTRINSIC constexpr void __execute_on_index_sequence(_Fp&&, index_sequence<>) { } template <size_t _Np, typename _Fp> _GLIBCXX_SIMD_INTRINSIC constexpr void __execute_n_times(_Fp&& __f) { __execute_on_index_sequence(static_cast<_Fp&&>(__f), make_index_sequence<_Np>{}); } // }}} // __generate_from_n_evaluations{{{ template <typename _R, typename _Fp, size_t... _I> _GLIBCXX_SIMD_INTRINSIC constexpr _R __execute_on_index_sequence_with_return(_Fp&& __f, index_sequence<_I...>) { return _R{__f(_SizeConstant<_I>())...}; } template <size_t _Np, typename _R, typename _Fp> _GLIBCXX_SIMD_INTRINSIC constexpr _R __generate_from_n_evaluations(_Fp&& __f) { return __execute_on_index_sequence_with_return<_R>( static_cast<_Fp&&>(__f), make_index_sequence<_Np>{}); } // }}} // __call_with_n_evaluations{{{ template <size_t... _I, typename _F0, typename _FArgs> _GLIBCXX_SIMD_INTRINSIC constexpr auto __call_with_n_evaluations(index_sequence<_I...>, _F0&& __f0, _FArgs&& __fargs) { return __f0(__fargs(_SizeConstant<_I>())...); } template <size_t _Np, typename _F0, typename _FArgs> _GLIBCXX_SIMD_INTRINSIC constexpr auto __call_with_n_evaluations(_F0&& __f0, _FArgs&& __fargs) { return __call_with_n_evaluations(make_index_sequence<_Np>{}, static_cast<_F0&&>(__f0), static_cast<_FArgs&&>(__fargs)); } // }}} // __call_with_subscripts{{{ template <size_t _First = 0, size_t... _It, typename _Tp, typename _Fp> _GLIBCXX_SIMD_INTRINSIC constexpr auto __call_with_subscripts(_Tp&& __x, index_sequence<_It...>, _Fp&& __fun) { return __fun(__x[_First + _It]...); } template <size_t _Np, size_t _First = 0, typename _Tp, typename _Fp> _GLIBCXX_SIMD_INTRINSIC constexpr auto __call_with_subscripts(_Tp&& __x, _Fp&& __fun) { return __call_with_subscripts<_First>(static_cast<_Tp&&>(__x), make_index_sequence<_Np>(), static_cast<_Fp&&>(__fun)); } // }}} // vvv ---- type traits ---- vvv // integer type aliases{{{ using _UChar = unsigned char; using _SChar = signed char; using _UShort = unsigned short; using _UInt = unsigned int; using _ULong = unsigned long; using _ULLong = unsigned long long; using _LLong = long long; //}}} // __first_of_pack{{{ template <typename _T0, typename...> struct __first_of_pack { using type = _T0; }; template <typename... _Ts> using __first_of_pack_t = typename __first_of_pack<_Ts...>::type; //}}} // __value_type_or_identity_t {{{ template <typename _Tp> typename _Tp::value_type __value_type_or_identity_impl(int); template <typename _Tp> _Tp __value_type_or_identity_impl(float); template <typename _Tp> using __value_type_or_identity_t = decltype(__value_type_or_identity_impl<_Tp>(int())); // }}} // __is_vectorizable {{{ template <typename _Tp> struct __is_vectorizable : public is_arithmetic<_Tp> {}; template <> struct __is_vectorizable<bool> : public false_type {}; template <typename _Tp> inline constexpr bool __is_vectorizable_v = __is_vectorizable<_Tp>::value; // Deduces to a vectorizable type template <typename _Tp, typename = enable_if_t<__is_vectorizable_v<_Tp>>> using _Vectorizable = _Tp; // }}} // _LoadStorePtr / __is_possible_loadstore_conversion {{{ template <typename _Ptr, typename _ValueType> struct __is_possible_loadstore_conversion : conjunction<__is_vectorizable<_Ptr>, __is_vectorizable<_ValueType>> {}; template <> struct __is_possible_loadstore_conversion<bool, bool> : true_type {}; // Deduces to a type allowed for load/store with the given value type. template <typename _Ptr, typename _ValueType, typename = enable_if_t< __is_possible_loadstore_conversion<_Ptr, _ValueType>::value>> using _LoadStorePtr = _Ptr; // }}} // __is_bitmask{{{ template <typename _Tp, typename = void_t<>> struct __is_bitmask : false_type {}; template <typename _Tp> inline constexpr bool __is_bitmask_v = __is_bitmask<_Tp>::value; // the __mmaskXX case: template <typename _Tp> struct __is_bitmask<_Tp, void_t<decltype(declval<unsigned&>() = declval<_Tp>() & 1u)>> : true_type {}; // }}} // __int_for_sizeof{{{ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wpedantic" template <size_t _Bytes> constexpr auto __int_for_sizeof() { static_assert(_Bytes > 0); if constexpr (_Bytes == sizeof(int)) return int(); #ifdef __clang__ else if constexpr (_Bytes == sizeof(char)) return char(); #else else if constexpr (_Bytes == sizeof(_SChar)) return _SChar(); #endif else if constexpr (_Bytes == sizeof(short)) return short(); #ifndef __clang__ else if constexpr (_Bytes == sizeof(long)) return long(); #endif else if constexpr (_Bytes == sizeof(_LLong)) return _LLong(); #ifdef __SIZEOF_INT128__ else if constexpr (_Bytes == sizeof(__int128)) return __int128(); #endif // __SIZEOF_INT128__ else if constexpr (_Bytes % sizeof(int) == 0) { constexpr size_t _Np = _Bytes / sizeof(int); struct _Ip { int _M_data[_Np]; _GLIBCXX_SIMD_INTRINSIC constexpr _Ip operator&(_Ip __rhs) const { return __generate_from_n_evaluations<_Np, _Ip>( [&](auto __i) _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return __rhs._M_data[__i] & _M_data[__i]; }); } _GLIBCXX_SIMD_INTRINSIC constexpr _Ip operator|(_Ip __rhs) const { return __generate_from_n_evaluations<_Np, _Ip>( [&](auto __i) _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return __rhs._M_data[__i] | _M_data[__i]; }); } _GLIBCXX_SIMD_INTRINSIC constexpr _Ip operator^(_Ip __rhs) const { return __generate_from_n_evaluations<_Np, _Ip>( [&](auto __i) _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return __rhs._M_data[__i] ^ _M_data[__i]; }); } _GLIBCXX_SIMD_INTRINSIC constexpr _Ip operator~() const { return __generate_from_n_evaluations<_Np, _Ip>( [&](auto __i) _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return ~_M_data[__i]; }); } }; return _Ip{}; } else static_assert(_Bytes == 0, "this should be unreachable"); } #pragma GCC diagnostic pop template <typename _Tp> using __int_for_sizeof_t = decltype(__int_for_sizeof<sizeof(_Tp)>()); template <size_t _Np> using __int_with_sizeof_t = decltype(__int_for_sizeof<_Np>()); // }}} // __is_fixed_size_abi{{{ template <typename _Tp> struct __is_fixed_size_abi : false_type {}; template <int _Np> struct __is_fixed_size_abi<simd_abi::fixed_size<_Np>> : true_type {}; template <typename _Tp> inline constexpr bool __is_fixed_size_abi_v = __is_fixed_size_abi<_Tp>::value; // }}} // constexpr feature detection{{{ constexpr inline bool __have_mmx = _GLIBCXX_SIMD_HAVE_MMX; constexpr inline bool __have_sse = _GLIBCXX_SIMD_HAVE_SSE; constexpr inline bool __have_sse2 = _GLIBCXX_SIMD_HAVE_SSE2; constexpr inline bool __have_sse3 = _GLIBCXX_SIMD_HAVE_SSE3; constexpr inline bool __have_ssse3 = _GLIBCXX_SIMD_HAVE_SSSE3; constexpr inline bool __have_sse4_1 = _GLIBCXX_SIMD_HAVE_SSE4_1; constexpr inline bool __have_sse4_2 = _GLIBCXX_SIMD_HAVE_SSE4_2; constexpr inline bool __have_xop = _GLIBCXX_SIMD_HAVE_XOP; constexpr inline bool __have_avx = _GLIBCXX_SIMD_HAVE_AVX; constexpr inline bool __have_avx2 = _GLIBCXX_SIMD_HAVE_AVX2; constexpr inline bool __have_bmi = _GLIBCXX_SIMD_HAVE_BMI1; constexpr inline bool __have_bmi2 = _GLIBCXX_SIMD_HAVE_BMI2; constexpr inline bool __have_lzcnt = _GLIBCXX_SIMD_HAVE_LZCNT; constexpr inline bool __have_sse4a = _GLIBCXX_SIMD_HAVE_SSE4A; constexpr inline bool __have_fma = _GLIBCXX_SIMD_HAVE_FMA; constexpr inline bool __have_fma4 = _GLIBCXX_SIMD_HAVE_FMA4; constexpr inline bool __have_f16c = _GLIBCXX_SIMD_HAVE_F16C; constexpr inline bool __have_popcnt = _GLIBCXX_SIMD_HAVE_POPCNT; constexpr inline bool __have_avx512f = _GLIBCXX_SIMD_HAVE_AVX512F; constexpr inline bool __have_avx512dq = _GLIBCXX_SIMD_HAVE_AVX512DQ; constexpr inline bool __have_avx512vl = _GLIBCXX_SIMD_HAVE_AVX512VL; constexpr inline bool __have_avx512bw = _GLIBCXX_SIMD_HAVE_AVX512BW; constexpr inline bool __have_avx512dq_vl = __have_avx512dq && __have_avx512vl; constexpr inline bool __have_avx512bw_vl = __have_avx512bw && __have_avx512vl; constexpr inline bool __have_neon = _GLIBCXX_SIMD_HAVE_NEON; constexpr inline bool __have_neon_a32 = _GLIBCXX_SIMD_HAVE_NEON_A32; constexpr inline bool __have_neon_a64 = _GLIBCXX_SIMD_HAVE_NEON_A64; constexpr inline bool __support_neon_float = #if defined __GCC_IEC_559 __GCC_IEC_559 == 0; #elif defined __FAST_MATH__ true; #else false; #endif #ifdef _ARCH_PWR10 constexpr inline bool __have_power10vec = true; #else constexpr inline bool __have_power10vec = false; #endif #ifdef __POWER9_VECTOR__ constexpr inline bool __have_power9vec = true; #else constexpr inline bool __have_power9vec = false; #endif #if defined __POWER8_VECTOR__ constexpr inline bool __have_power8vec = true; #else constexpr inline bool __have_power8vec = __have_power9vec; #endif #if defined __VSX__ constexpr inline bool __have_power_vsx = true; #else constexpr inline bool __have_power_vsx = __have_power8vec; #endif #if defined __ALTIVEC__ constexpr inline bool __have_power_vmx = true; #else constexpr inline bool __have_power_vmx = __have_power_vsx; #endif // }}} // __is_scalar_abi {{{ template <typename _Abi> constexpr bool __is_scalar_abi() { return is_same_v<simd_abi::scalar, _Abi>; } // }}} // __abi_bytes_v {{{ template <template <int> class _Abi, int _Bytes> constexpr int __abi_bytes_impl(_Abi<_Bytes>*) { return _Bytes; } template <typename _Tp> constexpr int __abi_bytes_impl(_Tp*) { return -1; } template <typename _Abi> inline constexpr int __abi_bytes_v = __abi_bytes_impl(static_cast<_Abi*>(nullptr)); // }}} // __is_builtin_bitmask_abi {{{ template <typename _Abi> constexpr bool __is_builtin_bitmask_abi() { return is_same_v<simd_abi::_VecBltnBtmsk<__abi_bytes_v<_Abi>>, _Abi>; } // }}} // __is_sse_abi {{{ template <typename _Abi> constexpr bool __is_sse_abi() { constexpr auto _Bytes = __abi_bytes_v<_Abi>; return _Bytes <= 16 && is_same_v<simd_abi::_VecBuiltin<_Bytes>, _Abi>; } // }}} // __is_avx_abi {{{ template <typename _Abi> constexpr bool __is_avx_abi() { constexpr auto _Bytes = __abi_bytes_v<_Abi>; return _Bytes > 16 && _Bytes <= 32 && is_same_v<simd_abi::_VecBuiltin<_Bytes>, _Abi>; } // }}} // __is_avx512_abi {{{ template <typename _Abi> constexpr bool __is_avx512_abi() { constexpr auto _Bytes = __abi_bytes_v<_Abi>; return _Bytes <= 64 && is_same_v<simd_abi::_Avx512<_Bytes>, _Abi>; } // }}} // __is_neon_abi {{{ template <typename _Abi> constexpr bool __is_neon_abi() { constexpr auto _Bytes = __abi_bytes_v<_Abi>; return _Bytes <= 16 && is_same_v<simd_abi::_VecBuiltin<_Bytes>, _Abi>; } // }}} // __make_dependent_t {{{ template <typename, typename _Up> struct __make_dependent { using type = _Up; }; template <typename _Tp, typename _Up> using __make_dependent_t = typename __make_dependent<_Tp, _Up>::type; // }}} // ^^^ ---- type traits ---- ^^^ // __invoke_ub{{{ template <typename... _Args> [[noreturn]] _GLIBCXX_SIMD_ALWAYS_INLINE void __invoke_ub([[maybe_unused]] const char* __msg, [[maybe_unused]] const _Args&... __args) { #ifdef _GLIBCXX_DEBUG_UB __builtin_fprintf(stderr, __msg, __args...); __builtin_trap(); #else __builtin_unreachable(); #endif } // }}} // __assert_unreachable{{{ template <typename _Tp> struct __assert_unreachable { static_assert(!is_same_v<_Tp, _Tp>, "this should be unreachable"); }; // }}} // __size_or_zero_v {{{ template <typename _Tp, typename _Ap, size_t _Np = simd_size<_Tp, _Ap>::value> constexpr size_t __size_or_zero_dispatch(int) { return _Np; } template <typename _Tp, typename _Ap> constexpr size_t __size_or_zero_dispatch(float) { return 0; } template <typename _Tp, typename _Ap> inline constexpr size_t __size_or_zero_v = __size_or_zero_dispatch<_Tp, _Ap>(0); // }}} // __div_roundup {{{ inline constexpr size_t __div_roundup(size_t __a, size_t __b) { return (__a + __b - 1) / __b; } // }}} // _ExactBool{{{ class _ExactBool { const bool _M_data; public: _GLIBCXX_SIMD_INTRINSIC constexpr _ExactBool(bool __b) : _M_data(__b) {} _ExactBool(int) = delete; _GLIBCXX_SIMD_INTRINSIC constexpr operator bool() const { return _M_data; } }; // }}} // __may_alias{{{ /**@internal * Helper __may_alias<_Tp> that turns _Tp into the type to be used for an * aliasing pointer. This adds the __may_alias attribute to _Tp (with compilers * that support it). */ template <typename _Tp> using __may_alias [[__gnu__::__may_alias__]] = _Tp; // }}} // _UnsupportedBase {{{ // simd and simd_mask base for unsupported <_Tp, _Abi> struct _UnsupportedBase { _UnsupportedBase() = delete; _UnsupportedBase(const _UnsupportedBase&) = delete; _UnsupportedBase& operator=(const _UnsupportedBase&) = delete; ~_UnsupportedBase() = delete; }; // }}} // _InvalidTraits {{{ /** * @internal * Defines the implementation of __a given <_Tp, _Abi>. * * Implementations must ensure that only valid <_Tp, _Abi> instantiations are * possible. Static assertions in the type definition do not suffice. It is * important that SFINAE works. */ struct _InvalidTraits { using _IsValid = false_type; using _SimdBase = _UnsupportedBase; using _MaskBase = _UnsupportedBase; static constexpr size_t _S_full_size = 0; static constexpr bool _S_is_partial = false; static constexpr size_t _S_simd_align = 1; struct _SimdImpl; struct _SimdMember {}; struct _SimdCastType; static constexpr size_t _S_mask_align = 1; struct _MaskImpl; struct _MaskMember {}; struct _MaskCastType; }; // }}} // _SimdTraits {{{ template <typename _Tp, typename _Abi, typename = void_t<>> struct _SimdTraits : _InvalidTraits {}; // }}} // __private_init, __bitset_init{{{ /** * @internal * Tag used for private init constructor of simd and simd_mask */ inline constexpr struct _PrivateInit {} __private_init = {}; inline constexpr struct _BitsetInit {} __bitset_init = {}; // }}} // __is_narrowing_conversion<_From, _To>{{{ template <typename _From, typename _To, bool = is_arithmetic_v<_From>, bool = is_arithmetic_v<_To>> struct __is_narrowing_conversion; // ignore "signed/unsigned mismatch" in the following trait. // The implicit conversions will do the right thing here. template <typename _From, typename _To> struct __is_narrowing_conversion<_From, _To, true, true> : public __bool_constant<( __digits_v<_From> > __digits_v<_To> || __finite_max_v<_From> > __finite_max_v<_To> || __finite_min_v<_From> < __finite_min_v<_To> || (is_signed_v<_From> && is_unsigned_v<_To>))> {}; template <typename _Tp> struct __is_narrowing_conversion<_Tp, bool, true, true> : public true_type {}; template <> struct __is_narrowing_conversion<bool, bool, true, true> : public false_type {}; template <typename _Tp> struct __is_narrowing_conversion<_Tp, _Tp, true, true> : public false_type {}; template <typename _From, typename _To> struct __is_narrowing_conversion<_From, _To, false, true> : public negation<is_convertible<_From, _To>> {}; // }}} // __converts_to_higher_integer_rank{{{ template <typename _From, typename _To, bool = (sizeof(_From) < sizeof(_To))> struct __converts_to_higher_integer_rank : public true_type {}; // this may fail for char -> short if sizeof(char) == sizeof(short) template <typename _From, typename _To> struct __converts_to_higher_integer_rank<_From, _To, false> : public is_same<decltype(declval<_From>() + declval<_To>()), _To> {}; // }}} // __data(simd/simd_mask) {{{ template <typename _Tp, typename _Ap> _GLIBCXX_SIMD_INTRINSIC constexpr const auto& __data(const simd<_Tp, _Ap>& __x); template <typename _Tp, typename _Ap> _GLIBCXX_SIMD_INTRINSIC constexpr auto& __data(simd<_Tp, _Ap>& __x); template <typename _Tp, typename _Ap> _GLIBCXX_SIMD_INTRINSIC constexpr const auto& __data(const simd_mask<_Tp, _Ap>& __x); template <typename _Tp, typename _Ap> _GLIBCXX_SIMD_INTRINSIC constexpr auto& __data(simd_mask<_Tp, _Ap>& __x); // }}} // _SimdConverter {{{ template <typename _FromT, typename _FromA, typename _ToT, typename _ToA, typename = void> struct _SimdConverter; template <typename _Tp, typename _Ap> struct _SimdConverter<_Tp, _Ap, _Tp, _Ap, void> { template <typename _Up> _GLIBCXX_SIMD_INTRINSIC const _Up& operator()(const _Up& __x) { return __x; } }; // }}} // __to_value_type_or_member_type {{{ template <typename _V> _GLIBCXX_SIMD_INTRINSIC constexpr auto __to_value_type_or_member_type(const _V& __x) -> decltype(__data(__x)) { return __data(__x); } template <typename _V> _GLIBCXX_SIMD_INTRINSIC constexpr const typename _V::value_type& __to_value_type_or_member_type(const typename _V::value_type& __x) { return __x; } // }}} // __bool_storage_member_type{{{ template <size_t _Size> struct __bool_storage_member_type; template <size_t _Size> using __bool_storage_member_type_t = typename __bool_storage_member_type<_Size>::type; // }}} // _SimdTuple {{{ // why not tuple? // 1. tuple gives no guarantee about the storage order, but I require // storage // equivalent to array<_Tp, _Np> // 2. direct access to the element type (first template argument) // 3. enforces equal element type, only different _Abi types are allowed template <typename _Tp, typename... _Abis> struct _SimdTuple; //}}} // __fixed_size_storage_t {{{ template <typename _Tp, int _Np> struct __fixed_size_storage; template <typename _Tp, int _Np> using __fixed_size_storage_t = typename __fixed_size_storage<_Tp, _Np>::type; // }}} // _SimdWrapper fwd decl{{{ template <typename _Tp, size_t _Size, typename = void_t<>> struct _SimdWrapper; template <typename _Tp> using _SimdWrapper8 = _SimdWrapper<_Tp, 8 / sizeof(_Tp)>; template <typename _Tp> using _SimdWrapper16 = _SimdWrapper<_Tp, 16 / sizeof(_Tp)>; template <typename _Tp> using _SimdWrapper32 = _SimdWrapper<_Tp, 32 / sizeof(_Tp)>; template <typename _Tp> using _SimdWrapper64 = _SimdWrapper<_Tp, 64 / sizeof(_Tp)>; // }}} // __is_simd_wrapper {{{ template <typename _Tp> struct __is_simd_wrapper : false_type {}; template <typename _Tp, size_t _Np> struct __is_simd_wrapper<_SimdWrapper<_Tp, _Np>> : true_type {}; template <typename _Tp> inline constexpr bool __is_simd_wrapper_v = __is_simd_wrapper<_Tp>::value; // }}} // _BitOps {{{ struct _BitOps { // _S_bit_iteration {{{ template <typename _Tp, typename _Fp> static void _S_bit_iteration(_Tp __mask, _Fp&& __f) { static_assert(sizeof(_ULLong) >= sizeof(_Tp)); conditional_t<sizeof(_Tp) <= sizeof(_UInt), _UInt, _ULLong> __k; if constexpr (is_convertible_v<_Tp, decltype(__k)>) __k = __mask; else __k = __mask.to_ullong(); while(__k) { __f(std::__countr_zero(__k)); __k &= (__k - 1); } } //}}} }; //}}} // __increment, __decrement {{{ template <typename _Tp = void> struct __increment { constexpr _Tp operator()(_Tp __a) const { return ++__a; } }; template <> struct __increment<void> { template <typename _Tp> constexpr _Tp operator()(_Tp __a) const { return ++__a; } }; template <typename _Tp = void> struct __decrement { constexpr _Tp operator()(_Tp __a) const { return --__a; } }; template <> struct __decrement<void> { template <typename _Tp> constexpr _Tp operator()(_Tp __a) const { return --__a; } }; // }}} // _ValuePreserving(OrInt) {{{ template <typename _From, typename _To, typename = enable_if_t<negation< __is_narrowing_conversion<__remove_cvref_t<_From>, _To>>::value>> using _ValuePreserving = _From; template <typename _From, typename _To, typename _DecayedFrom = __remove_cvref_t<_From>, typename = enable_if_t<conjunction< is_convertible<_From, _To>, disjunction< is_same<_DecayedFrom, _To>, is_same<_DecayedFrom, int>, conjunction<is_same<_DecayedFrom, _UInt>, is_unsigned<_To>>, negation<__is_narrowing_conversion<_DecayedFrom, _To>>>>::value>> using _ValuePreservingOrInt = _From; // }}} // __intrinsic_type {{{ template <typename _Tp, size_t _Bytes, typename = void_t<>> struct __intrinsic_type; template <typename _Tp, size_t _Size> using __intrinsic_type_t = typename __intrinsic_type<_Tp, _Size * sizeof(_Tp)>::type; template <typename _Tp> using __intrinsic_type2_t = typename __intrinsic_type<_Tp, 2>::type; template <typename _Tp> using __intrinsic_type4_t = typename __intrinsic_type<_Tp, 4>::type; template <typename _Tp> using __intrinsic_type8_t = typename __intrinsic_type<_Tp, 8>::type; template <typename _Tp> using __intrinsic_type16_t = typename __intrinsic_type<_Tp, 16>::type; template <typename _Tp> using __intrinsic_type32_t = typename __intrinsic_type<_Tp, 32>::type; template <typename _Tp> using __intrinsic_type64_t = typename __intrinsic_type<_Tp, 64>::type; // }}} // _BitMask {{{ template <size_t _Np, bool _Sanitized = false> struct _BitMask; template <size_t _Np, bool _Sanitized> struct __is_bitmask<_BitMask<_Np, _Sanitized>, void> : true_type {}; template <size_t _Np> using _SanitizedBitMask = _BitMask<_Np, true>; template <size_t _Np, bool _Sanitized> struct _BitMask { static_assert(_Np > 0); static constexpr size_t _NBytes = __div_roundup(_Np, __CHAR_BIT__); using _Tp = conditional_t<_Np == 1, bool, make_unsigned_t<__int_with_sizeof_t<std::min( sizeof(_ULLong), std::__bit_ceil(_NBytes))>>>; static constexpr int _S_array_size = __div_roundup(_NBytes, sizeof(_Tp)); _Tp _M_bits[_S_array_size]; static constexpr int _S_unused_bits = _Np == 1 ? 0 : _S_array_size * sizeof(_Tp) * __CHAR_BIT__ - _Np; static constexpr _Tp _S_bitmask = +_Tp(~_Tp()) >> _S_unused_bits; constexpr _BitMask() noexcept = default; constexpr _BitMask(unsigned long long __x) noexcept : _M_bits{static_cast<_Tp>(__x)} {} _BitMask(bitset<_Np> __x) noexcept : _BitMask(__x.to_ullong()) {} constexpr _BitMask(const _BitMask&) noexcept = default; template <bool _RhsSanitized, typename = enable_if_t<_RhsSanitized == false && _Sanitized == true>> constexpr _BitMask(const _BitMask<_Np, _RhsSanitized>& __rhs) noexcept : _BitMask(__rhs._M_sanitized()) {} constexpr operator _SimdWrapper<bool, _Np>() const noexcept { static_assert(_S_array_size == 1); return _M_bits[0]; } // precondition: is sanitized constexpr _Tp _M_to_bits() const noexcept { static_assert(_S_array_size == 1); return _M_bits[0]; } // precondition: is sanitized constexpr unsigned long long to_ullong() const noexcept { static_assert(_S_array_size == 1); return _M_bits[0]; } // precondition: is sanitized constexpr unsigned long to_ulong() const noexcept { static_assert(_S_array_size == 1); return _M_bits[0]; } constexpr bitset<_Np> _M_to_bitset() const noexcept { static_assert(_S_array_size == 1); return _M_bits[0]; } constexpr decltype(auto) _M_sanitized() const noexcept { if constexpr (_Sanitized) return *this; else if constexpr (_Np == 1) return _SanitizedBitMask<_Np>(_M_bits[0]); else { _SanitizedBitMask<_Np> __r = {}; for (int __i = 0; __i < _S_array_size; ++__i) __r._M_bits[__i] = _M_bits[__i]; if constexpr (_S_unused_bits > 0) __r._M_bits[_S_array_size - 1] &= _S_bitmask; return __r; } } template <size_t _Mp, bool _LSanitized> constexpr _BitMask<_Np + _Mp, _Sanitized> _M_prepend(_BitMask<_Mp, _LSanitized> __lsb) const noexcept { constexpr size_t _RN = _Np + _Mp; using _Rp = _BitMask<_RN, _Sanitized>; if constexpr (_Rp::_S_array_size == 1) { _Rp __r{{_M_bits[0]}}; __r._M_bits[0] <<= _Mp; __r._M_bits[0] |= __lsb._M_sanitized()._M_bits[0]; return __r; } else __assert_unreachable<_Rp>(); } // Return a new _BitMask with size _NewSize while dropping _DropLsb least // significant bits. If the operation implicitly produces a sanitized bitmask, // the result type will have _Sanitized set. template <size_t _DropLsb, size_t _NewSize = _Np - _DropLsb> constexpr auto _M_extract() const noexcept { static_assert(_Np > _DropLsb); static_assert(_DropLsb + _NewSize <= sizeof(_ULLong) * __CHAR_BIT__, "not implemented for bitmasks larger than one ullong"); if constexpr (_NewSize == 1) // must sanitize because the return _Tp is bool return _SanitizedBitMask<1>(_M_bits[0] & (_Tp(1) << _DropLsb)); else return _BitMask<_NewSize, ((_NewSize + _DropLsb == sizeof(_Tp) * __CHAR_BIT__ && _NewSize + _DropLsb <= _Np) || ((_Sanitized || _Np == sizeof(_Tp) * __CHAR_BIT__) && _NewSize + _DropLsb >= _Np))>(_M_bits[0] >> _DropLsb); } // True if all bits are set. Implicitly sanitizes if _Sanitized == false. constexpr bool all() const noexcept { if constexpr (_Np == 1) return _M_bits[0]; else if constexpr (!_Sanitized) return _M_sanitized().all(); else { constexpr _Tp __allbits = ~_Tp(); for (int __i = 0; __i < _S_array_size - 1; ++__i) if (_M_bits[__i] != __allbits) return false; return _M_bits[_S_array_size - 1] == _S_bitmask; } } // True if at least one bit is set. Implicitly sanitizes if _Sanitized == // false. constexpr bool any() const noexcept { if constexpr (_Np == 1) return _M_bits[0]; else if constexpr (!_Sanitized) return _M_sanitized().any(); else { for (int __i = 0; __i < _S_array_size - 1; ++__i) if (_M_bits[__i] != 0) return true; return _M_bits[_S_array_size - 1] != 0; } } // True if no bit is set. Implicitly sanitizes if _Sanitized == false. constexpr bool none() const noexcept { if constexpr (_Np == 1) return !_M_bits[0]; else if constexpr (!_Sanitized) return _M_sanitized().none(); else { for (int __i = 0; __i < _S_array_size - 1; ++__i) if (_M_bits[__i] != 0) return false; return _M_bits[_S_array_size - 1] == 0; } } // Returns the number of set bits. Implicitly sanitizes if _Sanitized == // false. constexpr int count() const noexcept { if constexpr (_Np == 1) return _M_bits[0]; else if constexpr (!_Sanitized) return _M_sanitized().none(); else { int __result = __builtin_popcountll(_M_bits[0]); for (int __i = 1; __i < _S_array_size; ++__i) __result += __builtin_popcountll(_M_bits[__i]); return __result; } } // Returns the bit at offset __i as bool. constexpr bool operator[](size_t __i) const noexcept { if constexpr (_Np == 1) return _M_bits[0]; else if constexpr (_S_array_size == 1) return (_M_bits[0] >> __i) & 1; else { const size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__); const size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__); return (_M_bits[__j] >> __shift) & 1; } } template <size_t __i> constexpr bool operator[](_SizeConstant<__i>) const noexcept { static_assert(__i < _Np); constexpr size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__); constexpr size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__); return static_cast<bool>(_M_bits[__j] & (_Tp(1) << __shift)); } // Set the bit at offset __i to __x. constexpr void set(size_t __i, bool __x) noexcept { if constexpr (_Np == 1) _M_bits[0] = __x; else if constexpr (_S_array_size == 1) { _M_bits[0] &= ~_Tp(_Tp(1) << __i); _M_bits[0] |= _Tp(_Tp(__x) << __i); } else { const size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__); const size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__); _M_bits[__j] &= ~_Tp(_Tp(1) << __shift); _M_bits[__j] |= _Tp(_Tp(__x) << __shift); } } template <size_t __i> constexpr void set(_SizeConstant<__i>, bool __x) noexcept { static_assert(__i < _Np); if constexpr (_Np == 1) _M_bits[0] = __x; else { constexpr size_t __j = __i / (sizeof(_Tp) * __CHAR_BIT__); constexpr size_t __shift = __i % (sizeof(_Tp) * __CHAR_BIT__); constexpr _Tp __mask = ~_Tp(_Tp(1) << __shift); _M_bits[__j] &= __mask; _M_bits[__j] |= _Tp(_Tp(__x) << __shift); } } // Inverts all bits. Sanitized input leads to sanitized output. constexpr _BitMask operator~() const noexcept { if constexpr (_Np == 1) return !_M_bits[0]; else { _BitMask __result{}; for (int __i = 0; __i < _S_array_size - 1; ++__i) __result._M_bits[__i] = ~_M_bits[__i]; if constexpr (_Sanitized) __result._M_bits[_S_array_size - 1] = _M_bits[_S_array_size - 1] ^ _S_bitmask; else __result._M_bits[_S_array_size - 1] = ~_M_bits[_S_array_size - 1]; return __result; } } constexpr _BitMask& operator^=(const _BitMask& __b) & noexcept { __execute_n_times<_S_array_size>( [&](auto __i) _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { _M_bits[__i] ^= __b._M_bits[__i]; }); return *this; } constexpr _BitMask& operator|=(const _BitMask& __b) & noexcept { __execute_n_times<_S_array_size>( [&](auto __i) _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { _M_bits[__i] |= __b._M_bits[__i]; }); return *this; } constexpr _BitMask& operator&=(const _BitMask& __b) & noexcept { __execute_n_times<_S_array_size>( [&](auto __i) _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { _M_bits[__i] &= __b._M_bits[__i]; }); return *this; } friend constexpr _BitMask operator^(const _BitMask& __a, const _BitMask& __b) noexcept { _BitMask __r = __a; __r ^= __b; return __r; } friend constexpr _BitMask operator|(const _BitMask& __a, const _BitMask& __b) noexcept { _BitMask __r = __a; __r |= __b; return __r; } friend constexpr _BitMask operator&(const _BitMask& __a, const _BitMask& __b) noexcept { _BitMask __r = __a; __r &= __b; return __r; } _GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop() const { if constexpr (_S_array_size == 0) return __builtin_constant_p(_M_bits[0]); else { for (int __i = 0; __i < _S_array_size; ++__i) if (!__builtin_constant_p(_M_bits[__i])) return false; return true; } } }; // }}} // vvv ---- builtin vector types [[gnu::vector_size(N)]] and operations ---- vvv // __min_vector_size {{{ template <typename _Tp = void> static inline constexpr int __min_vector_size = 2 * sizeof(_Tp); #if _GLIBCXX_SIMD_HAVE_NEON template <> inline constexpr int __min_vector_size<void> = 8; #else template <> inline constexpr int __min_vector_size<void> = 16; #endif // }}} // __vector_type {{{ template <typename _Tp, size_t _Np, typename = void> struct __vector_type_n {}; // substition failure for 0-element case template <typename _Tp> struct __vector_type_n<_Tp, 0, void> {}; // special case 1-element to be _Tp itself template <typename _Tp> struct __vector_type_n<_Tp, 1, enable_if_t<__is_vectorizable_v<_Tp>>> { using type = _Tp; }; // else, use GNU-style builtin vector types template <typename _Tp, size_t _Np> struct __vector_type_n<_Tp, _Np, enable_if_t<__is_vectorizable_v<_Tp> && _Np >= 2>> { static constexpr size_t _S_Np2 = std::__bit_ceil(_Np * sizeof(_Tp)); static constexpr size_t _S_Bytes = #ifdef __i386__ // Using [[gnu::vector_size(8)]] would wreak havoc on the FPU because // those objects are passed via MMX registers and nothing ever calls EMMS. _S_Np2 == 8 ? 16 : #endif _S_Np2 < __min_vector_size<_Tp> ? __min_vector_size<_Tp> : _S_Np2; using type [[__gnu__::__vector_size__(_S_Bytes)]] = _Tp; }; template <typename _Tp, size_t _Bytes, size_t = _Bytes % sizeof(_Tp)> struct __vector_type; template <typename _Tp, size_t _Bytes> struct __vector_type<_Tp, _Bytes, 0> : __vector_type_n<_Tp, _Bytes / sizeof(_Tp)> {}; template <typename _Tp, size_t _Size> using __vector_type_t = typename __vector_type_n<_Tp, _Size>::type; template <typename _Tp> using __vector_type2_t = typename __vector_type<_Tp, 2>::type; template <typename _Tp> using __vector_type4_t = typename __vector_type<_Tp, 4>::type; template <typename _Tp> using __vector_type8_t = typename __vector_type<_Tp, 8>::type; template <typename _Tp> using __vector_type16_t = typename __vector_type<_Tp, 16>::type; template <typename _Tp> using __vector_type32_t = typename __vector_type<_Tp, 32>::type; template <typename _Tp> using __vector_type64_t = typename __vector_type<_Tp, 64>::type; // }}} // __is_vector_type {{{ template <typename _Tp, typename = void_t<>> struct __is_vector_type : false_type {}; template <typename _Tp> struct __is_vector_type< _Tp, void_t<typename __vector_type< remove_reference_t<decltype(declval<_Tp>()[0])>, sizeof(_Tp)>::type>> : is_same<_Tp, typename __vector_type< remove_reference_t<decltype(declval<_Tp>()[0])>, sizeof(_Tp)>::type> {}; template <typename _Tp> inline constexpr bool __is_vector_type_v = __is_vector_type<_Tp>::value; // }}} // __is_intrinsic_type {{{ #if _GLIBCXX_SIMD_HAVE_SSE_ABI template <typename _Tp> using __is_intrinsic_type = __is_vector_type<_Tp>; #else // not SSE (x86) template <typename _Tp, typename = void_t<>> struct __is_intrinsic_type : false_type {}; template <typename _Tp> struct __is_intrinsic_type< _Tp, void_t<typename __intrinsic_type< remove_reference_t<decltype(declval<_Tp>()[0])>, sizeof(_Tp)>::type>> : is_same<_Tp, typename __intrinsic_type< remove_reference_t<decltype(declval<_Tp>()[0])>, sizeof(_Tp)>::type> {}; #endif template <typename _Tp> inline constexpr bool __is_intrinsic_type_v = __is_intrinsic_type<_Tp>::value; // }}} // _VectorTraits{{{ template <typename _Tp, typename = void_t<>> struct _VectorTraitsImpl; template <typename _Tp> struct _VectorTraitsImpl<_Tp, enable_if_t<__is_vector_type_v<_Tp> || __is_intrinsic_type_v<_Tp>>> { using type = _Tp; using value_type = remove_reference_t<decltype(declval<_Tp>()[0])>; static constexpr int _S_full_size = sizeof(_Tp) / sizeof(value_type); using _Wrapper = _SimdWrapper<value_type, _S_full_size>; template <typename _Up, int _W = _S_full_size> static constexpr bool _S_is = is_same_v<value_type, _Up> && _W == _S_full_size; }; template <typename _Tp, size_t _Np> struct _VectorTraitsImpl<_SimdWrapper<_Tp, _Np>, void_t<__vector_type_t<_Tp, _Np>>> { using type = __vector_type_t<_Tp, _Np>; using value_type = _Tp; static constexpr int _S_full_size = sizeof(type) / sizeof(value_type); using _Wrapper = _SimdWrapper<_Tp, _Np>; static constexpr bool _S_is_partial = (_Np == _S_full_size); static constexpr int _S_partial_width = _Np; template <typename _Up, int _W = _S_full_size> static constexpr bool _S_is = is_same_v<value_type, _Up>&& _W == _S_full_size; }; template <typename _Tp, typename = typename _VectorTraitsImpl<_Tp>::type> using _VectorTraits = _VectorTraitsImpl<_Tp>; // }}} // __as_vector{{{ template <typename _V> _GLIBCXX_SIMD_INTRINSIC constexpr auto __as_vector(_V __x) { if constexpr (__is_vector_type_v<_V>) return __x; else if constexpr (is_simd<_V>::value || is_simd_mask<_V>::value) return __data(__x)._M_data; else if constexpr (__is_vectorizable_v<_V>) return __vector_type_t<_V, 2>{__x}; else return __x._M_data; } // }}} // __as_wrapper{{{ template <size_t _Np = 0, typename _V> _GLIBCXX_SIMD_INTRINSIC constexpr auto __as_wrapper(_V __x) { if constexpr (__is_vector_type_v<_V>) return _SimdWrapper<typename _VectorTraits<_V>::value_type, (_Np > 0 ? _Np : _VectorTraits<_V>::_S_full_size)>(__x); else if constexpr (is_simd<_V>::value || is_simd_mask<_V>::value) { static_assert(_V::size() == _Np); return __data(__x); } else { static_assert(_V::_S_size == _Np); return __x; } } // }}} // __intrin_bitcast{{{ template <typename _To, typename _From> _GLIBCXX_SIMD_INTRINSIC constexpr _To __intrin_bitcast(_From __v) { static_assert((__is_vector_type_v<_From> || __is_intrinsic_type_v<_From>) && (__is_vector_type_v<_To> || __is_intrinsic_type_v<_To>)); if constexpr (sizeof(_To) == sizeof(_From)) return reinterpret_cast<_To>(__v); else if constexpr (sizeof(_From) > sizeof(_To)) if constexpr (sizeof(_To) >= 16) return reinterpret_cast<const __may_alias<_To>&>(__v); else { _To __r; __builtin_memcpy(&__r, &__v, sizeof(_To)); return __r; } #if _GLIBCXX_SIMD_X86INTRIN && !defined __clang__ else if constexpr (__have_avx && sizeof(_From) == 16 && sizeof(_To) == 32) return reinterpret_cast<_To>(__builtin_ia32_ps256_ps( reinterpret_cast<__vector_type_t<float, 4>>(__v))); else if constexpr (__have_avx512f && sizeof(_From) == 16 && sizeof(_To) == 64) return reinterpret_cast<_To>(__builtin_ia32_ps512_ps( reinterpret_cast<__vector_type_t<float, 4>>(__v))); else if constexpr (__have_avx512f && sizeof(_From) == 32 && sizeof(_To) == 64) return reinterpret_cast<_To>(__builtin_ia32_ps512_256ps( reinterpret_cast<__vector_type_t<float, 8>>(__v))); #endif // _GLIBCXX_SIMD_X86INTRIN else if constexpr (sizeof(__v) <= 8) return reinterpret_cast<_To>( __vector_type_t<__int_for_sizeof_t<_From>, sizeof(_To) / sizeof(_From)>{ reinterpret_cast<__int_for_sizeof_t<_From>>(__v)}); else { static_assert(sizeof(_To) > sizeof(_From)); _To __r = {}; __builtin_memcpy(&__r, &__v, sizeof(_From)); return __r; } } // }}} // __vector_bitcast{{{ template <typename _To, size_t _NN = 0, typename _From, typename _FromVT = _VectorTraits<_From>, size_t _Np = _NN == 0 ? sizeof(_From) / sizeof(_To) : _NN> _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_To, _Np> __vector_bitcast(_From __x) { using _R = __vector_type_t<_To, _Np>; return __intrin_bitcast<_R>(__x); } template <typename _To, size_t _NN = 0, typename _Tp, size_t _Nx, size_t _Np = _NN == 0 ? sizeof(_SimdWrapper<_Tp, _Nx>) / sizeof(_To) : _NN> _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_To, _Np> __vector_bitcast(const _SimdWrapper<_Tp, _Nx>& __x) { static_assert(_Np > 1); return __intrin_bitcast<__vector_type_t<_To, _Np>>(__x._M_data); } // }}} // __convert_x86 declarations {{{ #ifdef _GLIBCXX_SIMD_WORKAROUND_PR85048 template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>> _To __convert_x86(_Tp); template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>> _To __convert_x86(_Tp, _Tp); template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>> _To __convert_x86(_Tp, _Tp, _Tp, _Tp); template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>> _To __convert_x86(_Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp); template <typename _To, typename _Tp, typename _TVT = _VectorTraits<_Tp>> _To __convert_x86(_Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp, _Tp); #endif // _GLIBCXX_SIMD_WORKAROUND_PR85048 //}}} // __bit_cast {{{ template <typename _To, typename _From> _GLIBCXX_SIMD_INTRINSIC constexpr _To __bit_cast(const _From __x) { // TODO: implement with / replace by __builtin_bit_cast ASAP static_assert(sizeof(_To) == sizeof(_From)); constexpr bool __to_is_vectorizable = is_arithmetic_v<_To> || is_enum_v<_To>; constexpr bool __from_is_vectorizable = is_arithmetic_v<_From> || is_enum_v<_From>; if constexpr (__is_vector_type_v<_To> && __is_vector_type_v<_From>) return reinterpret_cast<_To>(__x); else if constexpr (__is_vector_type_v<_To> && __from_is_vectorizable) { using _FV [[__gnu__::__vector_size__(sizeof(_From))]] = _From; return reinterpret_cast<_To>(_FV{__x}); } else if constexpr (__to_is_vectorizable && __from_is_vectorizable) { using _TV [[__gnu__::__vector_size__(sizeof(_To))]] = _To; using _FV [[__gnu__::__vector_size__(sizeof(_From))]] = _From; return reinterpret_cast<_TV>(_FV{__x})[0]; } else if constexpr (__to_is_vectorizable && __is_vector_type_v<_From>) { using _TV [[__gnu__::__vector_size__(sizeof(_To))]] = _To; return reinterpret_cast<_TV>(__x)[0]; } else { _To __r; __builtin_memcpy(reinterpret_cast<char*>(&__r), reinterpret_cast<const char*>(&__x), sizeof(_To)); return __r; } } // }}} // __to_intrin {{{ template <typename _Tp, typename _TVT = _VectorTraits<_Tp>, typename _R = __intrinsic_type_t<typename _TVT::value_type, _TVT::_S_full_size>> _GLIBCXX_SIMD_INTRINSIC constexpr _R __to_intrin(_Tp __x) { static_assert(sizeof(__x) <= sizeof(_R), "__to_intrin may never drop values off the end"); if constexpr (sizeof(__x) == sizeof(_R)) return reinterpret_cast<_R>(__as_vector(__x)); else { using _Up = __int_for_sizeof_t<_Tp>; return reinterpret_cast<_R>( __vector_type_t<_Up, sizeof(_R) / sizeof(_Up)>{__bit_cast<_Up>(__x)}); } } // }}} // __make_vector{{{ template <typename _Tp, typename... _Args> _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, sizeof...(_Args)> __make_vector(const _Args&... __args) { return __vector_type_t<_Tp, sizeof...(_Args)>{static_cast<_Tp>(__args)...}; } // }}} // __vector_broadcast{{{ template <size_t _Np, typename _Tp, size_t... _I> _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, _Np> __vector_broadcast_impl(_Tp __x, index_sequence<_I...>) { return __vector_type_t<_Tp, _Np>{((void)_I, __x)...}; } template <size_t _Np, typename _Tp> _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, _Np> __vector_broadcast(_Tp __x) { return __vector_broadcast_impl<_Np, _Tp>(__x, make_index_sequence<_Np>()); } // }}} // __generate_vector{{{ template <typename _Tp, size_t _Np, typename _Gp, size_t... _I> _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, _Np> __generate_vector_impl(_Gp&& __gen, index_sequence<_I...>) { return __vector_type_t<_Tp, _Np>{ static_cast<_Tp>(__gen(_SizeConstant<_I>()))...}; } template <typename _V, typename _VVT = _VectorTraits<_V>, typename _Gp> _GLIBCXX_SIMD_INTRINSIC constexpr _V __generate_vector(_Gp&& __gen) { if constexpr (__is_vector_type_v<_V>) return __generate_vector_impl<typename _VVT::value_type, _VVT::_S_full_size>( static_cast<_Gp&&>(__gen), make_index_sequence<_VVT::_S_full_size>()); else return __generate_vector_impl<typename _VVT::value_type, _VVT::_S_partial_width>( static_cast<_Gp&&>(__gen), make_index_sequence<_VVT::_S_partial_width>()); } template <typename _Tp, size_t _Np, typename _Gp> _GLIBCXX_SIMD_INTRINSIC constexpr __vector_type_t<_Tp, _Np> __generate_vector(_Gp&& __gen) { return __generate_vector_impl<_Tp, _Np>(static_cast<_Gp&&>(__gen), make_index_sequence<_Np>()); } // }}} // __xor{{{ template <typename _TW> _GLIBCXX_SIMD_INTRINSIC constexpr _TW __xor(_TW __a, _TW __b) noexcept { if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>) { using _Tp = typename conditional_t<__is_simd_wrapper_v<_TW>, _TW, _VectorTraitsImpl<_TW>>::value_type; if constexpr (is_floating_point_v<_Tp>) { using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>; return __vector_bitcast<_Tp>(__vector_bitcast<_Ip>(__a) ^ __vector_bitcast<_Ip>(__b)); } else if constexpr (__is_vector_type_v<_TW>) return __a ^ __b; else return __a._M_data ^ __b._M_data; } else return __a ^ __b; } // }}} // __or{{{ template <typename _TW> _GLIBCXX_SIMD_INTRINSIC constexpr _TW __or(_TW __a, _TW __b) noexcept { if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>) { using _Tp = typename conditional_t<__is_simd_wrapper_v<_TW>, _TW, _VectorTraitsImpl<_TW>>::value_type; if constexpr (is_floating_point_v<_Tp>) { using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>; return __vector_bitcast<_Tp>(__vector_bitcast<_Ip>(__a) | __vector_bitcast<_Ip>(__b)); } else if constexpr (__is_vector_type_v<_TW>) return __a | __b; else return __a._M_data | __b._M_data; } else return __a | __b; } // }}} // __and{{{ template <typename _TW> _GLIBCXX_SIMD_INTRINSIC constexpr _TW __and(_TW __a, _TW __b) noexcept { if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>) { using _Tp = typename conditional_t<__is_simd_wrapper_v<_TW>, _TW, _VectorTraitsImpl<_TW>>::value_type; if constexpr (is_floating_point_v<_Tp>) { using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>; return __vector_bitcast<_Tp>(__vector_bitcast<_Ip>(__a) & __vector_bitcast<_Ip>(__b)); } else if constexpr (__is_vector_type_v<_TW>) return __a & __b; else return __a._M_data & __b._M_data; } else return __a & __b; } // }}} // __andnot{{{ #if _GLIBCXX_SIMD_X86INTRIN && !defined __clang__ static constexpr struct { _GLIBCXX_SIMD_INTRINSIC __v4sf operator()(__v4sf __a, __v4sf __b) const noexcept { return __builtin_ia32_andnps(__a, __b); } _GLIBCXX_SIMD_INTRINSIC __v2df operator()(__v2df __a, __v2df __b) const noexcept { return __builtin_ia32_andnpd(__a, __b); } _GLIBCXX_SIMD_INTRINSIC __v2di operator()(__v2di __a, __v2di __b) const noexcept { return __builtin_ia32_pandn128(__a, __b); } _GLIBCXX_SIMD_INTRINSIC __v8sf operator()(__v8sf __a, __v8sf __b) const noexcept { return __builtin_ia32_andnps256(__a, __b); } _GLIBCXX_SIMD_INTRINSIC __v4df operator()(__v4df __a, __v4df __b) const noexcept { return __builtin_ia32_andnpd256(__a, __b); } _GLIBCXX_SIMD_INTRINSIC __v4di operator()(__v4di __a, __v4di __b) const noexcept { if constexpr (__have_avx2) return __builtin_ia32_andnotsi256(__a, __b); else return reinterpret_cast<__v4di>( __builtin_ia32_andnpd256(reinterpret_cast<__v4df>(__a), reinterpret_cast<__v4df>(__b))); } _GLIBCXX_SIMD_INTRINSIC __v16sf operator()(__v16sf __a, __v16sf __b) const noexcept { if constexpr (__have_avx512dq) return _mm512_andnot_ps(__a, __b); else return reinterpret_cast<__v16sf>( _mm512_andnot_si512(reinterpret_cast<__v8di>(__a), reinterpret_cast<__v8di>(__b))); } _GLIBCXX_SIMD_INTRINSIC __v8df operator()(__v8df __a, __v8df __b) const noexcept { if constexpr (__have_avx512dq) return _mm512_andnot_pd(__a, __b); else return reinterpret_cast<__v8df>( _mm512_andnot_si512(reinterpret_cast<__v8di>(__a), reinterpret_cast<__v8di>(__b))); } _GLIBCXX_SIMD_INTRINSIC __v8di operator()(__v8di __a, __v8di __b) const noexcept { return _mm512_andnot_si512(__a, __b); } } _S_x86_andnot; #endif // _GLIBCXX_SIMD_X86INTRIN && !__clang__ template <typename _TW> _GLIBCXX_SIMD_INTRINSIC constexpr _TW __andnot(_TW __a, _TW __b) noexcept { if constexpr (__is_vector_type_v<_TW> || __is_simd_wrapper_v<_TW>) { using _TVT = conditional_t<__is_simd_wrapper_v<_TW>, _TW, _VectorTraitsImpl<_TW>>; using _Tp = typename _TVT::value_type; #if _GLIBCXX_SIMD_X86INTRIN && !defined __clang__ if constexpr (sizeof(_TW) >= 16) { const auto __ai = __to_intrin(__a); const auto __bi = __to_intrin(__b); if (!__builtin_is_constant_evaluated() && !(__builtin_constant_p(__ai) && __builtin_constant_p(__bi))) { const auto __r = _S_x86_andnot(__ai, __bi); if constexpr (is_convertible_v<decltype(__r), _TW>) return __r; else return reinterpret_cast<typename _TVT::type>(__r); } } #endif // _GLIBCXX_SIMD_X86INTRIN using _Ip = make_unsigned_t<__int_for_sizeof_t<_Tp>>; return __vector_bitcast<_Tp>(~__vector_bitcast<_Ip>(__a) & __vector_bitcast<_Ip>(__b)); } else return ~__a & __b; } // }}} // __not{{{ template <typename _Tp, typename _TVT = _VectorTraits<_Tp>> _GLIBCXX_SIMD_INTRINSIC constexpr _Tp __not(_Tp __a) noexcept { if constexpr (is_floating_point_v<typename _TVT::value_type>) return reinterpret_cast<typename _TVT::type>( ~__vector_bitcast<unsigned>(__a)); else return ~__a; } // }}} // __concat{{{ template <typename _Tp, typename _TVT = _VectorTraits<_Tp>, typename _R = __vector_type_t<typename _TVT::value_type, _TVT::_S_full_size * 2>> constexpr _R __concat(_Tp a_, _Tp b_) { #ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_1 using _W = conditional_t<is_floating_point_v<typename _TVT::value_type>, double, conditional_t<(sizeof(_Tp) >= 2 * sizeof(long long)), long long, typename _TVT::value_type>>; constexpr int input_width = sizeof(_Tp) / sizeof(_W); const auto __a = __vector_bitcast<_W>(a_); const auto __b = __vector_bitcast<_W>(b_); using _Up = __vector_type_t<_W, sizeof(_R) / sizeof(_W)>; #else constexpr int input_width = _TVT::_S_full_size; const _Tp& __a = a_; const _Tp& __b = b_; using _Up = _R; #endif if constexpr (input_width == 2) return reinterpret_cast<_R>(_Up{__a[0], __a[1], __b[0], __b[1]}); else if constexpr (input_width == 4) return reinterpret_cast<_R>( _Up{__a[0], __a[1], __a[2], __a[3], __b[0], __b[1], __b[2], __b[3]}); else if constexpr (input_width == 8) return reinterpret_cast<_R>( _Up{__a[0], __a[1], __a[2], __a[3], __a[4], __a[5], __a[6], __a[7], __b[0], __b[1], __b[2], __b[3], __b[4], __b[5], __b[6], __b[7]}); else if constexpr (input_width == 16) return reinterpret_cast<_R>( _Up{__a[0], __a[1], __a[2], __a[3], __a[4], __a[5], __a[6], __a[7], __a[8], __a[9], __a[10], __a[11], __a[12], __a[13], __a[14], __a[15], __b[0], __b[1], __b[2], __b[3], __b[4], __b[5], __b[6], __b[7], __b[8], __b[9], __b[10], __b[11], __b[12], __b[13], __b[14], __b[15]}); else if constexpr (input_width == 32) return reinterpret_cast<_R>( _Up{__a[0], __a[1], __a[2], __a[3], __a[4], __a[5], __a[6], __a[7], __a[8], __a[9], __a[10], __a[11], __a[12], __a[13], __a[14], __a[15], __a[16], __a[17], __a[18], __a[19], __a[20], __a[21], __a[22], __a[23], __a[24], __a[25], __a[26], __a[27], __a[28], __a[29], __a[30], __a[31], __b[0], __b[1], __b[2], __b[3], __b[4], __b[5], __b[6], __b[7], __b[8], __b[9], __b[10], __b[11], __b[12], __b[13], __b[14], __b[15], __b[16], __b[17], __b[18], __b[19], __b[20], __b[21], __b[22], __b[23], __b[24], __b[25], __b[26], __b[27], __b[28], __b[29], __b[30], __b[31]}); } // }}} // __zero_extend {{{ template <typename _Tp, typename _TVT = _VectorTraits<_Tp>> struct _ZeroExtendProxy { using value_type = typename _TVT::value_type; static constexpr size_t _Np = _TVT::_S_full_size; const _Tp __x; template <typename _To, typename _ToVT = _VectorTraits<_To>, typename = enable_if_t<is_same_v<typename _ToVT::value_type, value_type>>> _GLIBCXX_SIMD_INTRINSIC operator _To() const { constexpr size_t _ToN = _ToVT::_S_full_size; if constexpr (_ToN == _Np) return __x; else if constexpr (_ToN == 2 * _Np) { #ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_3 if constexpr (__have_avx && _TVT::template _S_is<float, 4>) return __vector_bitcast<value_type>( _mm256_insertf128_ps(__m256(), __x, 0)); else if constexpr (__have_avx && _TVT::template _S_is<double, 2>) return __vector_bitcast<value_type>( _mm256_insertf128_pd(__m256d(), __x, 0)); else if constexpr (__have_avx2 && _Np * sizeof(value_type) == 16) return __vector_bitcast<value_type>( _mm256_insertf128_si256(__m256i(), __to_intrin(__x), 0)); else if constexpr (__have_avx512f && _TVT::template _S_is<float, 8>) { if constexpr (__have_avx512dq) return __vector_bitcast<value_type>( _mm512_insertf32x8(__m512(), __x, 0)); else return reinterpret_cast<__m512>( _mm512_insertf64x4(__m512d(), reinterpret_cast<__m256d>(__x), 0)); } else if constexpr (__have_avx512f && _TVT::template _S_is<double, 4>) return __vector_bitcast<value_type>( _mm512_insertf64x4(__m512d(), __x, 0)); else if constexpr (__have_avx512f && _Np * sizeof(value_type) == 32) return __vector_bitcast<value_type>( _mm512_inserti64x4(__m512i(), __to_intrin(__x), 0)); #endif return __concat(__x, _Tp()); } else if constexpr (_ToN == 4 * _Np) { #ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_3 if constexpr (__have_avx512dq && _TVT::template _S_is<double, 2>) { return __vector_bitcast<value_type>( _mm512_insertf64x2(__m512d(), __x, 0)); } else if constexpr (__have_avx512f && is_floating_point_v<value_type>) { return __vector_bitcast<value_type>( _mm512_insertf32x4(__m512(), reinterpret_cast<__m128>(__x), 0)); } else if constexpr (__have_avx512f && _Np * sizeof(value_type) == 16) { return __vector_bitcast<value_type>( _mm512_inserti32x4(__m512i(), __to_intrin(__x), 0)); } #endif return __concat(__concat(__x, _Tp()), __vector_type_t<value_type, _Np * 2>()); } else if constexpr (_ToN == 8 * _Np) return __concat(operator __vector_type_t<value_type, _Np * 4>(), __vector_type_t<value_type, _Np * 4>()); else if constexpr (_ToN == 16 * _Np) return __concat(operator __vector_type_t<value_type, _Np * 8>(), __vector_type_t<value_type, _Np * 8>()); else __assert_unreachable<_Tp>(); } }; template <typename _Tp, typename _TVT = _VectorTraits<_Tp>> _GLIBCXX_SIMD_INTRINSIC _ZeroExtendProxy<_Tp, _TVT> __zero_extend(_Tp __x) { return {__x}; } // }}} // __extract<_Np, By>{{{ template <int _Offset, int _SplitBy, typename _Tp, typename _TVT = _VectorTraits<_Tp>, typename _R = __vector_type_t<typename _TVT::value_type, _TVT::_S_full_size / _SplitBy>> _GLIBCXX_SIMD_INTRINSIC constexpr _R __extract(_Tp __in) { using value_type = typename _TVT::value_type; #if _GLIBCXX_SIMD_X86INTRIN // {{{ if constexpr (sizeof(_Tp) == 64 && _SplitBy == 4 && _Offset > 0) { if constexpr (__have_avx512dq && is_same_v<double, value_type>) return _mm512_extractf64x2_pd(__to_intrin(__in), _Offset); else if constexpr (is_floating_point_v<value_type>) return __vector_bitcast<value_type>( _mm512_extractf32x4_ps(__intrin_bitcast<__m512>(__in), _Offset)); else return reinterpret_cast<_R>( _mm512_extracti32x4_epi32(__intrin_bitcast<__m512i>(__in), _Offset)); } else #endif // _GLIBCXX_SIMD_X86INTRIN }}} { #ifdef _GLIBCXX_SIMD_WORKAROUND_XXX_1 using _W = conditional_t< is_floating_point_v<value_type>, double, conditional_t<(sizeof(_R) >= 16), long long, value_type>>; static_assert(sizeof(_R) % sizeof(_W) == 0); constexpr int __return_width = sizeof(_R) / sizeof(_W); using _Up = __vector_type_t<_W, __return_width>; const auto __x = __vector_bitcast<_W>(__in); #else constexpr int __return_width = _TVT::_S_full_size / _SplitBy; using _Up = _R; const __vector_type_t<value_type, _TVT::_S_full_size>& __x = __in; // only needed for _Tp = _SimdWrapper<value_type, _Np> #endif constexpr int _O = _Offset * __return_width; return __call_with_subscripts<__return_width, _O>( __x, [](auto... __entries) _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return reinterpret_cast<_R>(_Up{__entries...}); }); } } // }}} // __lo/__hi64[z]{{{ template <typename _Tp, typename _R = __vector_type8_t<typename _VectorTraits<_Tp>::value_type>> _GLIBCXX_SIMD_INTRINSIC constexpr _R __lo64(_Tp __x) { _R __r{}; __builtin_memcpy(&__r, &__x, 8); return __r; } template <typename _Tp, typename _R = __vector_type8_t<typename _VectorTraits<_Tp>::value_type>> _GLIBCXX_SIMD_INTRINSIC constexpr _R __hi64(_Tp __x) { static_assert(sizeof(_Tp) == 16, "use __hi64z if you meant it"); _R __r{}; __builtin_memcpy(&__r, reinterpret_cast<const char*>(&__x) + 8, 8); return __r; } template <typename _Tp, typename _R = __vector_type8_t<typename _VectorTraits<_Tp>::value_type>> _GLIBCXX_SIMD_INTRINSIC constexpr _R __hi64z([[maybe_unused]] _Tp __x) { _R __r{}; if constexpr (sizeof(_Tp) == 16) __builtin_memcpy(&__r, reinterpret_cast<const char*>(&__x) + 8, 8); return __r; } // }}} // __lo/__hi128{{{ template <typename _Tp> _GLIBCXX_SIMD_INTRINSIC constexpr auto __lo128(_Tp __x) { return __extract<0, sizeof(_Tp) / 16>(__x); } template <typename _Tp> _GLIBCXX_SIMD_INTRINSIC constexpr auto __hi128(_Tp __x) { static_assert(sizeof(__x) == 32); return __extract<1, 2>(__x); } // }}} // __lo/__hi256{{{ template <typename _Tp> _GLIBCXX_SIMD_INTRINSIC constexpr auto __lo256(_Tp __x) { static_assert(sizeof(__x) == 64); return __extract<0, 2>(__x); } template <typename _Tp> _GLIBCXX_SIMD_INTRINSIC constexpr auto __hi256(_Tp __x) { static_assert(sizeof(__x) == 64); return __extract<1, 2>(__x); } // }}} // __auto_bitcast{{{ template <typename _Tp> struct _AutoCast { static_assert(__is_vector_type_v<_Tp>); const _Tp __x; template <typename _Up, typename _UVT = _VectorTraits<_Up>> _GLIBCXX_SIMD_INTRINSIC constexpr operator _Up() const { return __intrin_bitcast<typename _UVT::type>(__x); } }; template <typename _Tp> _GLIBCXX_SIMD_INTRINSIC constexpr _AutoCast<_Tp> __auto_bitcast(const _Tp& __x) { return {__x}; } template <typename _Tp, size_t _Np> _GLIBCXX_SIMD_INTRINSIC constexpr _AutoCast<typename _SimdWrapper<_Tp, _Np>::_BuiltinType> __auto_bitcast(const _SimdWrapper<_Tp, _Np>& __x) { return {__x._M_data}; } // }}} // ^^^ ---- builtin vector types [[gnu::vector_size(N)]] and operations ---- ^^^ #if _GLIBCXX_SIMD_HAVE_SSE_ABI // __bool_storage_member_type{{{ #if _GLIBCXX_SIMD_HAVE_AVX512F && _GLIBCXX_SIMD_X86INTRIN template <size_t _Size> struct __bool_storage_member_type { static_assert((_Size & (_Size - 1)) != 0, "This trait may only be used for non-power-of-2 sizes. " "Power-of-2 sizes must be specialized."); using type = typename __bool_storage_member_type<std::__bit_ceil(_Size)>::type; }; template <> struct __bool_storage_member_type<1> { using type = bool; }; template <> struct __bool_storage_member_type<2> { using type = __mmask8; }; template <> struct __bool_storage_member_type<4> { using type = __mmask8; }; template <> struct __bool_storage_member_type<8> { using type = __mmask8; }; template <> struct __bool_storage_member_type<16> { using type = __mmask16; }; template <> struct __bool_storage_member_type<32> { using type = __mmask32; }; template <> struct __bool_storage_member_type<64> { using type = __mmask64; }; #endif // _GLIBCXX_SIMD_HAVE_AVX512F // }}} // __intrinsic_type (x86){{{ // the following excludes bool via __is_vectorizable #if _GLIBCXX_SIMD_HAVE_SSE template <typename _Tp, size_t _Bytes> struct __intrinsic_type<_Tp, _Bytes, enable_if_t<__is_vectorizable_v<_Tp> && _Bytes <= 64>> { static_assert(!is_same_v<_Tp, long double>, "no __intrinsic_type support for long double on x86"); static constexpr size_t _S_VBytes = _Bytes <= 16 ? 16 : _Bytes <= 32 ? 32 : 64; using type [[__gnu__::__vector_size__(_S_VBytes)]] = conditional_t<is_integral_v<_Tp>, long long int, _Tp>; }; #endif // _GLIBCXX_SIMD_HAVE_SSE // }}} #endif // _GLIBCXX_SIMD_HAVE_SSE_ABI // __intrinsic_type (ARM){{{ #if _GLIBCXX_SIMD_HAVE_NEON template <> struct __intrinsic_type<float, 8, void> { using type = float32x2_t; }; template <> struct __intrinsic_type<float, 16, void> { using type = float32x4_t; }; template <> struct __intrinsic_type<double, 8, void> { #if _GLIBCXX_SIMD_HAVE_NEON_A64 using type = float64x1_t; #endif }; template <> struct __intrinsic_type<double, 16, void> { #if _GLIBCXX_SIMD_HAVE_NEON_A64 using type = float64x2_t; #endif }; #define _GLIBCXX_SIMD_ARM_INTRIN(_Bits, _Np) \ template <> \ struct __intrinsic_type<__int_with_sizeof_t<_Bits / 8>, \ _Np * _Bits / 8, void> \ { using type = int##_Bits##x##_Np##_t; }; \ template <> \ struct __intrinsic_type<make_unsigned_t<__int_with_sizeof_t<_Bits / 8>>, \ _Np * _Bits / 8, void> \ { using type = uint##_Bits##x##_Np##_t; } _GLIBCXX_SIMD_ARM_INTRIN(8, 8); _GLIBCXX_SIMD_ARM_INTRIN(8, 16); _GLIBCXX_SIMD_ARM_INTRIN(16, 4); _GLIBCXX_SIMD_ARM_INTRIN(16, 8); _GLIBCXX_SIMD_ARM_INTRIN(32, 2); _GLIBCXX_SIMD_ARM_INTRIN(32, 4); _GLIBCXX_SIMD_ARM_INTRIN(64, 1); _GLIBCXX_SIMD_ARM_INTRIN(64, 2); #undef _GLIBCXX_SIMD_ARM_INTRIN template <typename _Tp, size_t _Bytes> struct __intrinsic_type<_Tp, _Bytes, enable_if_t<__is_vectorizable_v<_Tp> && _Bytes <= 16>> { static constexpr int _SVecBytes = _Bytes <= 8 ? 8 : 16; using _Ip = __int_for_sizeof_t<_Tp>; using _Up = conditional_t< is_floating_point_v<_Tp>, _Tp, conditional_t<is_unsigned_v<_Tp>, make_unsigned_t<_Ip>, _Ip>>; static_assert(!is_same_v<_Tp, _Up> || _SVecBytes != _Bytes, "should use explicit specialization above"); using type = typename __intrinsic_type<_Up, _SVecBytes>::type; }; #endif // _GLIBCXX_SIMD_HAVE_NEON // }}} // __intrinsic_type (PPC){{{ #ifdef __ALTIVEC__ template <typename _Tp> struct __intrinsic_type_impl; #define _GLIBCXX_SIMD_PPC_INTRIN(_Tp) \ template <> \ struct __intrinsic_type_impl<_Tp> { using type = __vector _Tp; } _GLIBCXX_SIMD_PPC_INTRIN(float); #ifdef __VSX__ _GLIBCXX_SIMD_PPC_INTRIN(double); #endif _GLIBCXX_SIMD_PPC_INTRIN(signed char); _GLIBCXX_SIMD_PPC_INTRIN(unsigned char); _GLIBCXX_SIMD_PPC_INTRIN(signed short); _GLIBCXX_SIMD_PPC_INTRIN(unsigned short); _GLIBCXX_SIMD_PPC_INTRIN(signed int); _GLIBCXX_SIMD_PPC_INTRIN(unsigned int); #if defined __VSX__ || __SIZEOF_LONG__ == 4 _GLIBCXX_SIMD_PPC_INTRIN(signed long); _GLIBCXX_SIMD_PPC_INTRIN(unsigned long); #endif #ifdef __VSX__ _GLIBCXX_SIMD_PPC_INTRIN(signed long long); _GLIBCXX_SIMD_PPC_INTRIN(unsigned long long); #endif #undef _GLIBCXX_SIMD_PPC_INTRIN template <typename _Tp, size_t _Bytes> struct __intrinsic_type<_Tp, _Bytes, enable_if_t<__is_vectorizable_v<_Tp> && _Bytes <= 16>> { static constexpr bool _S_is_ldouble = is_same_v<_Tp, long double>; // allow _Tp == long double with -mlong-double-64 static_assert(!(_S_is_ldouble && sizeof(long double) > sizeof(double)), "no __intrinsic_type support for 128-bit floating point on PowerPC"); #ifndef __VSX__ static_assert(!(is_same_v<_Tp, double> || (_S_is_ldouble && sizeof(long double) == sizeof(double))), "no __intrinsic_type support for 64-bit floating point on PowerPC w/o VSX"); #endif static constexpr auto __element_type() { if constexpr (is_floating_point_v<_Tp>) { if constexpr (_S_is_ldouble) return double {}; else return _Tp {}; } else if constexpr (is_signed_v<_Tp>) { if constexpr (sizeof(_Tp) == sizeof(_SChar)) return _SChar {}; else if constexpr (sizeof(_Tp) == sizeof(short)) return short {}; else if constexpr (sizeof(_Tp) == sizeof(int)) return int {}; else if constexpr (sizeof(_Tp) == sizeof(_LLong)) return _LLong {}; } else { if constexpr (sizeof(_Tp) == sizeof(_UChar)) return _UChar {}; else if constexpr (sizeof(_Tp) == sizeof(_UShort)) return _UShort {}; else if constexpr (sizeof(_Tp) == sizeof(_UInt)) return _UInt {}; else if constexpr (sizeof(_Tp) == sizeof(_ULLong)) return _ULLong {}; } } using type = typename __intrinsic_type_impl<decltype(__element_type())>::type; }; #endif // __ALTIVEC__ // }}} // _SimdWrapper<bool>{{{1 template <size_t _Width> struct _SimdWrapper<bool, _Width, void_t<typename __bool_storage_member_type<_Width>::type>> { using _BuiltinType = typename __bool_storage_member_type<_Width>::type; using value_type = bool; static constexpr size_t _S_full_size = sizeof(_BuiltinType) * __CHAR_BIT__; _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper<bool, _S_full_size> __as_full_vector() const { return _M_data; } _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper() = default; _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(_BuiltinType __k) : _M_data(__k) {}; _GLIBCXX_SIMD_INTRINSIC operator const _BuiltinType&() const { return _M_data; } _GLIBCXX_SIMD_INTRINSIC operator _BuiltinType&() { return _M_data; } _GLIBCXX_SIMD_INTRINSIC _BuiltinType __intrin() const { return _M_data; } _GLIBCXX_SIMD_INTRINSIC constexpr value_type operator[](size_t __i) const { return _M_data & (_BuiltinType(1) << __i); } template <size_t __i> _GLIBCXX_SIMD_INTRINSIC constexpr value_type operator[](_SizeConstant<__i>) const { return _M_data & (_BuiltinType(1) << __i); } _GLIBCXX_SIMD_INTRINSIC constexpr void _M_set(size_t __i, value_type __x) { if (__x) _M_data |= (_BuiltinType(1) << __i); else _M_data &= ~(_BuiltinType(1) << __i); } _GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop() const { return __builtin_constant_p(_M_data); } _GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop_none_of() const { if (__builtin_constant_p(_M_data)) { constexpr int __nbits = sizeof(_BuiltinType) * __CHAR_BIT__; constexpr _BuiltinType __active_mask = ~_BuiltinType() >> (__nbits - _Width); return (_M_data & __active_mask) == 0; } return false; } _GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop_all_of() const { if (__builtin_constant_p(_M_data)) { constexpr int __nbits = sizeof(_BuiltinType) * __CHAR_BIT__; constexpr _BuiltinType __active_mask = ~_BuiltinType() >> (__nbits - _Width); return (_M_data & __active_mask) == __active_mask; } return false; } _BuiltinType _M_data; }; // _SimdWrapperBase{{{1 template <bool _MustZeroInitPadding, typename _BuiltinType> struct _SimdWrapperBase; template <typename _BuiltinType> struct _SimdWrapperBase<false, _BuiltinType> // no padding or no SNaNs { _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapperBase() = default; _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapperBase(_BuiltinType __init) : _M_data(__init) {} _BuiltinType _M_data; }; template <typename _BuiltinType> struct _SimdWrapperBase<true, _BuiltinType> // with padding that needs to // never become SNaN { _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapperBase() : _M_data() {} _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapperBase(_BuiltinType __init) : _M_data(__init) {} _BuiltinType _M_data; }; // }}} // _SimdWrapper{{{ template <typename _Tp, size_t _Width> struct _SimdWrapper< _Tp, _Width, void_t<__vector_type_t<_Tp, _Width>, __intrinsic_type_t<_Tp, _Width>>> : _SimdWrapperBase<__has_iec559_behavior<__signaling_NaN, _Tp>::value && sizeof(_Tp) * _Width == sizeof(__vector_type_t<_Tp, _Width>), __vector_type_t<_Tp, _Width>> { using _Base = _SimdWrapperBase<__has_iec559_behavior<__signaling_NaN, _Tp>::value && sizeof(_Tp) * _Width == sizeof(__vector_type_t<_Tp, _Width>), __vector_type_t<_Tp, _Width>>; static_assert(__is_vectorizable_v<_Tp>); static_assert(_Width >= 2); // 1 doesn't make sense, use _Tp directly then using _BuiltinType = __vector_type_t<_Tp, _Width>; using value_type = _Tp; static inline constexpr size_t _S_full_size = sizeof(_BuiltinType) / sizeof(value_type); static inline constexpr int _S_size = _Width; static inline constexpr bool _S_is_partial = _S_full_size != _S_size; using _Base::_M_data; _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper<_Tp, _S_full_size> __as_full_vector() const { return _M_data; } _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(initializer_list<_Tp> __init) : _Base(__generate_from_n_evaluations<_Width, _BuiltinType>( [&](auto __i) _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return __init.begin()[__i.value]; })) {} _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper() = default; _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(const _SimdWrapper&) = default; _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(_SimdWrapper&&) = default; _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper& operator=(const _SimdWrapper&) = default; _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper& operator=(_SimdWrapper&&) = default; template <typename _V, typename = enable_if_t<disjunction_v< is_same<_V, __vector_type_t<_Tp, _Width>>, is_same<_V, __intrinsic_type_t<_Tp, _Width>>>>> _GLIBCXX_SIMD_INTRINSIC constexpr _SimdWrapper(_V __x) // __vector_bitcast can convert e.g. __m128 to __vector(2) float : _Base(__vector_bitcast<_Tp, _Width>(__x)) {} template <typename... _As, typename = enable_if_t<((is_same_v<simd_abi::scalar, _As> && ...) && sizeof...(_As) <= _Width)>> _GLIBCXX_SIMD_INTRINSIC constexpr operator _SimdTuple<_Tp, _As...>() const { return __generate_from_n_evaluations<sizeof...(_As), _SimdTuple<_Tp, _As...>>( [&](auto __i) constexpr _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return _M_data[int(__i)]; }); } _GLIBCXX_SIMD_INTRINSIC constexpr operator const _BuiltinType&() const { return _M_data; } _GLIBCXX_SIMD_INTRINSIC constexpr operator _BuiltinType&() { return _M_data; } _GLIBCXX_SIMD_INTRINSIC constexpr _Tp operator[](size_t __i) const { return _M_data[__i]; } template <size_t __i> _GLIBCXX_SIMD_INTRINSIC constexpr _Tp operator[](_SizeConstant<__i>) const { return _M_data[__i]; } _GLIBCXX_SIMD_INTRINSIC constexpr void _M_set(size_t __i, _Tp __x) { if (__builtin_is_constant_evaluated()) _M_data = __generate_from_n_evaluations<_Width, _BuiltinType>([&](auto __j) { return __j == __i ? __x : _M_data[__j()]; }); else _M_data[__i] = __x; } _GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop() const { return __builtin_constant_p(_M_data); } _GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop_none_of() const { if (__builtin_constant_p(_M_data)) { bool __r = true; if constexpr (is_floating_point_v<_Tp>) { using _Ip = __int_for_sizeof_t<_Tp>; const auto __intdata = __vector_bitcast<_Ip>(_M_data); __execute_n_times<_Width>( [&](auto __i) { __r &= __intdata[__i.value] == _Ip(); }); } else __execute_n_times<_Width>( [&](auto __i) { __r &= _M_data[__i.value] == _Tp(); }); if (__builtin_constant_p(__r)) return __r; } return false; } _GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop_all_of() const { if (__builtin_constant_p(_M_data)) { bool __r = true; if constexpr (is_floating_point_v<_Tp>) { using _Ip = __int_for_sizeof_t<_Tp>; const auto __intdata = __vector_bitcast<_Ip>(_M_data); __execute_n_times<_Width>( [&](auto __i) { __r &= __intdata[__i.value] == ~_Ip(); }); } else __execute_n_times<_Width>( [&](auto __i) { __r &= _M_data[__i.value] == ~_Tp(); }); if (__builtin_constant_p(__r)) return __r; } return false; } }; // }}} // __vectorized_sizeof {{{ template <typename _Tp> constexpr size_t __vectorized_sizeof() { if constexpr (!__is_vectorizable_v<_Tp>) return 0; if constexpr (sizeof(_Tp) <= 8) { // X86: if constexpr (__have_avx512bw) return 64; if constexpr (__have_avx512f && sizeof(_Tp) >= 4) return 64; if constexpr (__have_avx2) return 32; if constexpr (__have_avx && is_floating_point_v<_Tp>) return 32; if constexpr (__have_sse2) return 16; if constexpr (__have_sse && is_same_v<_Tp, float>) return 16; /* The following is too much trouble because of mixed MMX and x87 code. * While nothing here explicitly calls MMX instructions of registers, * they are still emitted but no EMMS cleanup is done. if constexpr (__have_mmx && sizeof(_Tp) <= 4 && is_integral_v<_Tp>) return 8; */ // PowerPC: if constexpr (__have_power8vec || (__have_power_vmx && (sizeof(_Tp) < 8)) || (__have_power_vsx && is_floating_point_v<_Tp>) ) return 16; // ARM: if constexpr (__have_neon_a64 || (__have_neon_a32 && !is_same_v<_Tp, double>) ) return 16; if constexpr (__have_neon && sizeof(_Tp) < 8 // Only allow fp if the user allows non-ICE559 fp (e.g. // via -ffast-math). ARMv7 NEON fp is not conforming to // IEC559. && (__support_neon_float || !is_floating_point_v<_Tp>)) return 16; } return sizeof(_Tp); } // }}} namespace simd_abi { // most of simd_abi is defined in simd_detail.h template <typename _Tp> inline constexpr int max_fixed_size = (__have_avx512bw && sizeof(_Tp) == 1) ? 64 : 32; // compatible {{{ #if defined __x86_64__ || defined __aarch64__ template <typename _Tp> using compatible = conditional_t<(sizeof(_Tp) <= 8), _VecBuiltin<16>, scalar>; #elif defined __ARM_NEON // FIXME: not sure, probably needs to be scalar (or dependent on the hard-float // ABI?) template <typename _Tp> using compatible = conditional_t<(sizeof(_Tp) < 8 && (__support_neon_float || !is_floating_point_v<_Tp>)), _VecBuiltin<16>, scalar>; #else template <typename> using compatible = scalar; #endif // }}} // native {{{ template <typename _Tp> constexpr auto __determine_native_abi() { constexpr size_t __bytes = __vectorized_sizeof<_Tp>(); if constexpr (__bytes == sizeof(_Tp)) return static_cast<scalar*>(nullptr); else if constexpr (__have_avx512vl || (__have_avx512f && __bytes == 64)) return static_cast<_VecBltnBtmsk<__bytes>*>(nullptr); else return static_cast<_VecBuiltin<__bytes>*>(nullptr); } template <typename _Tp, typename = enable_if_t<__is_vectorizable_v<_Tp>>> using native = remove_pointer_t<decltype(__determine_native_abi<_Tp>())>; // }}} // __default_abi {{{ #if defined _GLIBCXX_SIMD_DEFAULT_ABI template <typename _Tp> using __default_abi = _GLIBCXX_SIMD_DEFAULT_ABI<_Tp>; #else template <typename _Tp> using __default_abi = compatible<_Tp>; #endif // }}} } // namespace simd_abi // traits {{{1 template <typename _Tp> struct is_simd_flag_type : false_type {}; template <> struct is_simd_flag_type<element_aligned_tag> : true_type {}; template <> struct is_simd_flag_type<vector_aligned_tag> : true_type {}; template <size_t _Np> struct is_simd_flag_type<overaligned_tag<_Np>> : __bool_constant<(_Np > 0) and __has_single_bit(_Np)> {}; template <typename _Tp> inline constexpr bool is_simd_flag_type_v = is_simd_flag_type<_Tp>::value; template <typename _Tp, typename = enable_if_t<is_simd_flag_type_v<_Tp>>> using _IsSimdFlagType = _Tp; // is_abi_tag {{{2 template <typename _Tp, typename = void_t<>> struct is_abi_tag : false_type {}; template <typename _Tp> struct is_abi_tag<_Tp, void_t<typename _Tp::_IsValidAbiTag>> : public _Tp::_IsValidAbiTag {}; template <typename _Tp> inline constexpr bool is_abi_tag_v = is_abi_tag<_Tp>::value; // is_simd(_mask) {{{2 template <typename _Tp> struct is_simd : public false_type {}; template <typename _Tp> inline constexpr bool is_simd_v = is_simd<_Tp>::value; template <typename _Tp> struct is_simd_mask : public false_type {}; template <typename _Tp> inline constexpr bool is_simd_mask_v = is_simd_mask<_Tp>::value; // simd_size {{{2 template <typename _Tp, typename _Abi, typename = void> struct __simd_size_impl {}; template <typename _Tp, typename _Abi> struct __simd_size_impl< _Tp, _Abi, enable_if_t<conjunction_v<__is_vectorizable<_Tp>, is_abi_tag<_Abi>>>> : _SizeConstant<_Abi::template _S_size<_Tp>> {}; template <typename _Tp, typename _Abi = simd_abi::__default_abi<_Tp>> struct simd_size : __simd_size_impl<_Tp, _Abi> {}; template <typename _Tp, typename _Abi = simd_abi::__default_abi<_Tp>> inline constexpr size_t simd_size_v = simd_size<_Tp, _Abi>::value; // simd_abi::deduce {{{2 template <typename _Tp, size_t _Np, typename = void> struct __deduce_impl; namespace simd_abi { /** * @tparam _Tp The requested `value_type` for the elements. * @tparam _Np The requested number of elements. * @tparam _Abis This parameter is ignored, since this implementation cannot * make any use of it. Either __a good native ABI is matched and used as `type` * alias, or the `fixed_size<_Np>` ABI is used, which internally is built from * the best matching native ABIs. */ template <typename _Tp, size_t _Np, typename...> struct deduce : __deduce_impl<_Tp, _Np> {}; template <typename _Tp, size_t _Np, typename... _Abis> using deduce_t = typename deduce<_Tp, _Np, _Abis...>::type; } // namespace simd_abi // }}}2 // rebind_simd {{{2 template <typename _Tp, typename _V, typename = void> struct rebind_simd; template <typename _Tp, typename _Up, typename _Abi> struct rebind_simd<_Tp, simd<_Up, _Abi>, void_t<simd_abi::deduce_t<_Tp, simd_size_v<_Up, _Abi>, _Abi>>> { using type = simd<_Tp, simd_abi::deduce_t<_Tp, simd_size_v<_Up, _Abi>, _Abi>>; }; template <typename _Tp, typename _Up, typename _Abi> struct rebind_simd<_Tp, simd_mask<_Up, _Abi>, void_t<simd_abi::deduce_t<_Tp, simd_size_v<_Up, _Abi>, _Abi>>> { using type = simd_mask<_Tp, simd_abi::deduce_t<_Tp, simd_size_v<_Up, _Abi>, _Abi>>; }; template <typename _Tp, typename _V> using rebind_simd_t = typename rebind_simd<_Tp, _V>::type; // resize_simd {{{2 template <int _Np, typename _V, typename = void> struct resize_simd; template <int _Np, typename _Tp, typename _Abi> struct resize_simd<_Np, simd<_Tp, _Abi>, void_t<simd_abi::deduce_t<_Tp, _Np, _Abi>>> { using type = simd<_Tp, simd_abi::deduce_t<_Tp, _Np, _Abi>>; }; template <int _Np, typename _Tp, typename _Abi> struct resize_simd<_Np, simd_mask<_Tp, _Abi>, void_t<simd_abi::deduce_t<_Tp, _Np, _Abi>>> { using type = simd_mask<_Tp, simd_abi::deduce_t<_Tp, _Np, _Abi>>; }; template <int _Np, typename _V> using resize_simd_t = typename resize_simd<_Np, _V>::type; // }}}2 // memory_alignment {{{2 template <typename _Tp, typename _Up = typename _Tp::value_type> struct memory_alignment : public _SizeConstant<vector_aligned_tag::_S_alignment<_Tp, _Up>> {}; template <typename _Tp, typename _Up = typename _Tp::value_type> inline constexpr size_t memory_alignment_v = memory_alignment<_Tp, _Up>::value; // class template simd [simd] {{{1 template <typename _Tp, typename _Abi = simd_abi::__default_abi<_Tp>> class simd; template <typename _Tp, typename _Abi> struct is_simd<simd<_Tp, _Abi>> : public true_type {}; template <typename _Tp> using native_simd = simd<_Tp, simd_abi::native<_Tp>>; template <typename _Tp, int _Np> using fixed_size_simd = simd<_Tp, simd_abi::fixed_size<_Np>>; template <typename _Tp, size_t _Np> using __deduced_simd = simd<_Tp, simd_abi::deduce_t<_Tp, _Np>>; // class template simd_mask [simd_mask] {{{1 template <typename _Tp, typename _Abi = simd_abi::__default_abi<_Tp>> class simd_mask; template <typename _Tp, typename _Abi> struct is_simd_mask<simd_mask<_Tp, _Abi>> : public true_type {}; template <typename _Tp> using native_simd_mask = simd_mask<_Tp, simd_abi::native<_Tp>>; template <typename _Tp, int _Np> using fixed_size_simd_mask = simd_mask<_Tp, simd_abi::fixed_size<_Np>>; template <typename _Tp, size_t _Np> using __deduced_simd_mask = simd_mask<_Tp, simd_abi::deduce_t<_Tp, _Np>>; // casts [simd.casts] {{{1 // static_simd_cast {{{2 template <typename _Tp, typename _Up, typename _Ap, bool = is_simd_v<_Tp>, typename = void> struct __static_simd_cast_return_type; template <typename _Tp, typename _A0, typename _Up, typename _Ap> struct __static_simd_cast_return_type<simd_mask<_Tp, _A0>, _Up, _Ap, false, void> : __static_simd_cast_return_type<simd<_Tp, _A0>, _Up, _Ap> {}; template <typename _Tp, typename _Up, typename _Ap> struct __static_simd_cast_return_type< _Tp, _Up, _Ap, true, enable_if_t<_Tp::size() == simd_size_v<_Up, _Ap>>> { using type = _Tp; }; template <typename _Tp, typename _Ap> struct __static_simd_cast_return_type<_Tp, _Tp, _Ap, false, #ifdef _GLIBCXX_SIMD_FIX_P2TS_ISSUE66 enable_if_t<__is_vectorizable_v<_Tp>> #else void #endif > { using type = simd<_Tp, _Ap>; }; template <typename _Tp, typename = void> struct __safe_make_signed { using type = _Tp;}; template <typename _Tp> struct __safe_make_signed<_Tp, enable_if_t<is_integral_v<_Tp>>> { // the extra make_unsigned_t is because of PR85951 using type = make_signed_t<make_unsigned_t<_Tp>>; }; template <typename _Tp> using safe_make_signed_t = typename __safe_make_signed<_Tp>::type; template <typename _Tp, typename _Up, typename _Ap> struct __static_simd_cast_return_type<_Tp, _Up, _Ap, false, #ifdef _GLIBCXX_SIMD_FIX_P2TS_ISSUE66 enable_if_t<__is_vectorizable_v<_Tp>> #else void #endif > { using type = conditional_t< (is_integral_v<_Up> && is_integral_v<_Tp> && #ifndef _GLIBCXX_SIMD_FIX_P2TS_ISSUE65 is_signed_v<_Up> != is_signed_v<_Tp> && #endif is_same_v<safe_make_signed_t<_Up>, safe_make_signed_t<_Tp>>), simd<_Tp, _Ap>, fixed_size_simd<_Tp, simd_size_v<_Up, _Ap>>>; }; template <typename _Tp, typename _Up, typename _Ap, typename _R = typename __static_simd_cast_return_type<_Tp, _Up, _Ap>::type> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _R static_simd_cast(const simd<_Up, _Ap>& __x) { if constexpr (is_same<_R, simd<_Up, _Ap>>::value) return __x; else { _SimdConverter<_Up, _Ap, typename _R::value_type, typename _R::abi_type> __c; return _R(__private_init, __c(__data(__x))); } } namespace __proposed { template <typename _Tp, typename _Up, typename _Ap, typename _R = typename __static_simd_cast_return_type<_Tp, _Up, _Ap>::type> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR typename _R::mask_type static_simd_cast(const simd_mask<_Up, _Ap>& __x) { using _RM = typename _R::mask_type; return {__private_init, _RM::abi_type::_MaskImpl::template _S_convert< typename _RM::simd_type::value_type>(__x)}; } } // namespace __proposed // simd_cast {{{2 template <typename _Tp, typename _Up, typename _Ap, typename _To = __value_type_or_identity_t<_Tp>> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR auto simd_cast(const simd<_ValuePreserving<_Up, _To>, _Ap>& __x) -> decltype(static_simd_cast<_Tp>(__x)) { return static_simd_cast<_Tp>(__x); } namespace __proposed { template <typename _Tp, typename _Up, typename _Ap, typename _To = __value_type_or_identity_t<_Tp>> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR auto simd_cast(const simd_mask<_ValuePreserving<_Up, _To>, _Ap>& __x) -> decltype(static_simd_cast<_Tp>(__x)) { return static_simd_cast<_Tp>(__x); } } // namespace __proposed // }}}2 // resizing_simd_cast {{{ namespace __proposed { /* Proposed spec: template <class T, class U, class Abi> T resizing_simd_cast(const simd<U, Abi>& x) p1 Constraints: - is_simd_v<T> is true and - T::value_type is the same type as U p2 Returns: A simd object with the i^th element initialized to x[i] for all i in the range of [0, min(T::size(), simd_size_v<U, Abi>)). If T::size() is larger than simd_size_v<U, Abi>, the remaining elements are value-initialized. template <class T, class U, class Abi> T resizing_simd_cast(const simd_mask<U, Abi>& x) p1 Constraints: is_simd_mask_v<T> is true p2 Returns: A simd_mask object with the i^th element initialized to x[i] for all i in the range of [0, min(T::size(), simd_size_v<U, Abi>)). If T::size() is larger than simd_size_v<U, Abi>, the remaining elements are initialized to false. */ template <typename _Tp, typename _Up, typename _Ap> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR enable_if_t< conjunction_v<is_simd<_Tp>, is_same<typename _Tp::value_type, _Up>>, _Tp> resizing_simd_cast(const simd<_Up, _Ap>& __x) { if constexpr (is_same_v<typename _Tp::abi_type, _Ap>) return __x; else if (__builtin_is_constant_evaluated()) return _Tp([&](auto __i) constexpr { return __i < simd_size_v<_Up, _Ap> ? __x[__i] : _Up(); }); else if constexpr (simd_size_v<_Up, _Ap> == 1) { _Tp __r{}; __r[0] = __x[0]; return __r; } else if constexpr (_Tp::size() == 1) return __x[0]; else if constexpr (sizeof(_Tp) == sizeof(__x) && !__is_fixed_size_abi_v<_Ap>) return {__private_init, __vector_bitcast<typename _Tp::value_type, _Tp::size()>( _Ap::_S_masked(__data(__x))._M_data)}; else { _Tp __r{}; __builtin_memcpy(&__data(__r), &__data(__x), sizeof(_Up) * std::min(_Tp::size(), simd_size_v<_Up, _Ap>)); return __r; } } template <typename _Tp, typename _Up, typename _Ap> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR enable_if_t<is_simd_mask_v<_Tp>, _Tp> resizing_simd_cast(const simd_mask<_Up, _Ap>& __x) { return {__private_init, _Tp::abi_type::_MaskImpl::template _S_convert< typename _Tp::simd_type::value_type>(__x)}; } } // namespace __proposed // }}} // to_fixed_size {{{2 template <typename _Tp, int _Np> _GLIBCXX_SIMD_INTRINSIC fixed_size_simd<_Tp, _Np> to_fixed_size(const fixed_size_simd<_Tp, _Np>& __x) { return __x; } template <typename _Tp, int _Np> _GLIBCXX_SIMD_INTRINSIC fixed_size_simd_mask<_Tp, _Np> to_fixed_size(const fixed_size_simd_mask<_Tp, _Np>& __x) { return __x; } template <typename _Tp, typename _Ap> _GLIBCXX_SIMD_INTRINSIC fixed_size_simd<_Tp, simd_size_v<_Tp, _Ap>> to_fixed_size(const simd<_Tp, _Ap>& __x) { using _Rp = fixed_size_simd<_Tp, simd_size_v<_Tp, _Ap>>; return _Rp([&__x](auto __i) constexpr _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return __x[__i]; }); } template <typename _Tp, typename _Ap> _GLIBCXX_SIMD_INTRINSIC fixed_size_simd_mask<_Tp, simd_size_v<_Tp, _Ap>> to_fixed_size(const simd_mask<_Tp, _Ap>& __x) { return {__private_init, [&](auto __i) constexpr _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return __x[__i]; }}; } // to_native {{{2 template <typename _Tp, int _Np> _GLIBCXX_SIMD_INTRINSIC enable_if_t<(_Np == native_simd<_Tp>::size()), native_simd<_Tp>> to_native(const fixed_size_simd<_Tp, _Np>& __x) { alignas(memory_alignment_v<native_simd<_Tp>>) _Tp __mem[_Np]; __x.copy_to(__mem, vector_aligned); return {__mem, vector_aligned}; } template <typename _Tp, int _Np> _GLIBCXX_SIMD_INTRINSIC enable_if_t<(_Np == native_simd_mask<_Tp>::size()), native_simd_mask<_Tp>> to_native(const fixed_size_simd_mask<_Tp, _Np>& __x) { return native_simd_mask<_Tp>( __private_init, [&](auto __i) constexpr _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return __x[__i]; }); } // to_compatible {{{2 template <typename _Tp, int _Np> _GLIBCXX_SIMD_INTRINSIC enable_if_t<(_Np == simd<_Tp>::size()), simd<_Tp>> to_compatible(const simd<_Tp, simd_abi::fixed_size<_Np>>& __x) { alignas(memory_alignment_v<simd<_Tp>>) _Tp __mem[_Np]; __x.copy_to(__mem, vector_aligned); return {__mem, vector_aligned}; } template <typename _Tp, int _Np> _GLIBCXX_SIMD_INTRINSIC enable_if_t<(_Np == simd_mask<_Tp>::size()), simd_mask<_Tp>> to_compatible(const simd_mask<_Tp, simd_abi::fixed_size<_Np>>& __x) { return simd_mask<_Tp>( __private_init, [&](auto __i) constexpr _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return __x[__i]; }); } // masked assignment [simd_mask.where] {{{1 // where_expression {{{1 // const_where_expression<M, T> {{{2 template <typename _M, typename _Tp> class const_where_expression { using _V = _Tp; static_assert(is_same_v<_V, __remove_cvref_t<_Tp>>); struct _Wrapper { using value_type = _V; }; protected: using _Impl = typename _V::_Impl; using value_type = typename conditional_t<is_arithmetic_v<_V>, _Wrapper, _V>::value_type; _GLIBCXX_SIMD_INTRINSIC friend const _M& __get_mask(const const_where_expression& __x) { return __x._M_k; } _GLIBCXX_SIMD_INTRINSIC friend const _Tp& __get_lvalue(const const_where_expression& __x) { return __x._M_value; } const _M& _M_k; _Tp& _M_value; public: const_where_expression(const const_where_expression&) = delete; const_where_expression& operator=(const const_where_expression&) = delete; _GLIBCXX_SIMD_INTRINSIC constexpr const_where_expression(const _M& __kk, const _Tp& dd) : _M_k(__kk), _M_value(const_cast<_Tp&>(dd)) {} _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _V operator-() const&& { return {__private_init, _Impl::template _S_masked_unary<negate>(__data(_M_k), __data(_M_value))}; } template <typename _Up, typename _Flags> [[nodiscard]] _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _V copy_from(const _LoadStorePtr<_Up, value_type>* __mem, _IsSimdFlagType<_Flags>) const&& { return {__private_init, _Impl::_S_masked_load(__data(_M_value), __data(_M_k), _Flags::template _S_apply<_V>(__mem))}; } template <typename _Up, typename _Flags> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR void copy_to(_LoadStorePtr<_Up, value_type>* __mem, _IsSimdFlagType<_Flags>) const&& { _Impl::_S_masked_store(__data(_M_value), _Flags::template _S_apply<_V>(__mem), __data(_M_k)); } }; // const_where_expression<bool, T> {{{2 template <typename _Tp> class const_where_expression<bool, _Tp> { using _M = bool; using _V = _Tp; static_assert(is_same_v<_V, __remove_cvref_t<_Tp>>); struct _Wrapper { using value_type = _V; }; protected: using value_type = typename conditional_t<is_arithmetic_v<_V>, _Wrapper, _V>::value_type; _GLIBCXX_SIMD_INTRINSIC friend const _M& __get_mask(const const_where_expression& __x) { return __x._M_k; } _GLIBCXX_SIMD_INTRINSIC friend const _Tp& __get_lvalue(const const_where_expression& __x) { return __x._M_value; } const bool _M_k; _Tp& _M_value; public: const_where_expression(const const_where_expression&) = delete; const_where_expression& operator=(const const_where_expression&) = delete; _GLIBCXX_SIMD_INTRINSIC constexpr const_where_expression(const bool __kk, const _Tp& dd) : _M_k(__kk), _M_value(const_cast<_Tp&>(dd)) {} _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _V operator-() const&& { return _M_k ? -_M_value : _M_value; } template <typename _Up, typename _Flags> [[nodiscard]] _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _V copy_from(const _LoadStorePtr<_Up, value_type>* __mem, _IsSimdFlagType<_Flags>) const&& { return _M_k ? static_cast<_V>(__mem[0]) : _M_value; } template <typename _Up, typename _Flags> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR void copy_to(_LoadStorePtr<_Up, value_type>* __mem, _IsSimdFlagType<_Flags>) const&& { if (_M_k) __mem[0] = _M_value; } }; // where_expression<M, T> {{{2 template <typename _M, typename _Tp> class where_expression : public const_where_expression<_M, _Tp> { using _Impl = typename const_where_expression<_M, _Tp>::_Impl; static_assert(!is_const<_Tp>::value, "where_expression may only be instantiated with __a non-const " "_Tp parameter"); using typename const_where_expression<_M, _Tp>::value_type; using const_where_expression<_M, _Tp>::_M_k; using const_where_expression<_M, _Tp>::_M_value; static_assert( is_same<typename _M::abi_type, typename _Tp::abi_type>::value, ""); static_assert(_M::size() == _Tp::size(), ""); _GLIBCXX_SIMD_INTRINSIC friend constexpr _Tp& __get_lvalue(where_expression& __x) { return __x._M_value; } public: where_expression(const where_expression&) = delete; where_expression& operator=(const where_expression&) = delete; _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR where_expression(const _M& __kk, _Tp& dd) : const_where_expression<_M, _Tp>(__kk, dd) {} template <typename _Up> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR void operator=(_Up&& __x) && { _Impl::_S_masked_assign(__data(_M_k), __data(_M_value), __to_value_type_or_member_type<_Tp>( static_cast<_Up&&>(__x))); } #define _GLIBCXX_SIMD_OP_(__op, __name) \ template <typename _Up> \ _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR void \ operator __op##=(_Up&& __x)&& \ { \ _Impl::template _S_masked_cassign( \ __data(_M_k), __data(_M_value), \ __to_value_type_or_member_type<_Tp>(static_cast<_Up&&>(__x)), \ [](auto __impl, auto __lhs, auto __rhs) \ constexpr _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA \ { return __impl.__name(__lhs, __rhs); }); \ } \ static_assert(true) _GLIBCXX_SIMD_OP_(+, _S_plus); _GLIBCXX_SIMD_OP_(-, _S_minus); _GLIBCXX_SIMD_OP_(*, _S_multiplies); _GLIBCXX_SIMD_OP_(/, _S_divides); _GLIBCXX_SIMD_OP_(%, _S_modulus); _GLIBCXX_SIMD_OP_(&, _S_bit_and); _GLIBCXX_SIMD_OP_(|, _S_bit_or); _GLIBCXX_SIMD_OP_(^, _S_bit_xor); _GLIBCXX_SIMD_OP_(<<, _S_shift_left); _GLIBCXX_SIMD_OP_(>>, _S_shift_right); #undef _GLIBCXX_SIMD_OP_ _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR void operator++() && { __data(_M_value) = _Impl::template _S_masked_unary<__increment>(__data(_M_k), __data(_M_value)); } _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR void operator++(int) && { __data(_M_value) = _Impl::template _S_masked_unary<__increment>(__data(_M_k), __data(_M_value)); } _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR void operator--() && { __data(_M_value) = _Impl::template _S_masked_unary<__decrement>(__data(_M_k), __data(_M_value)); } _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR void operator--(int) && { __data(_M_value) = _Impl::template _S_masked_unary<__decrement>(__data(_M_k), __data(_M_value)); } // intentionally hides const_where_expression::copy_from template <typename _Up, typename _Flags> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR void copy_from(const _LoadStorePtr<_Up, value_type>* __mem, _IsSimdFlagType<_Flags>) && { __data(_M_value) = _Impl::_S_masked_load(__data(_M_value), __data(_M_k), _Flags::template _S_apply<_Tp>(__mem)); } }; // where_expression<bool, T> {{{2 template <typename _Tp> class where_expression<bool, _Tp> : public const_where_expression<bool, _Tp> { using _M = bool; using typename const_where_expression<_M, _Tp>::value_type; using const_where_expression<_M, _Tp>::_M_k; using const_where_expression<_M, _Tp>::_M_value; public: where_expression(const where_expression&) = delete; where_expression& operator=(const where_expression&) = delete; _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR where_expression(const _M& __kk, _Tp& dd) : const_where_expression<_M, _Tp>(__kk, dd) {} #define _GLIBCXX_SIMD_OP_(__op) \ template <typename _Up> \ _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR void \ operator __op(_Up&& __x)&& \ { if (_M_k) _M_value __op static_cast<_Up&&>(__x); } _GLIBCXX_SIMD_OP_(=) _GLIBCXX_SIMD_OP_(+=) _GLIBCXX_SIMD_OP_(-=) _GLIBCXX_SIMD_OP_(*=) _GLIBCXX_SIMD_OP_(/=) _GLIBCXX_SIMD_OP_(%=) _GLIBCXX_SIMD_OP_(&=) _GLIBCXX_SIMD_OP_(|=) _GLIBCXX_SIMD_OP_(^=) _GLIBCXX_SIMD_OP_(<<=) _GLIBCXX_SIMD_OP_(>>=) #undef _GLIBCXX_SIMD_OP_ _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR void operator++() && { if (_M_k) ++_M_value; } _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR void operator++(int) && { if (_M_k) ++_M_value; } _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR void operator--() && { if (_M_k) --_M_value; } _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR void operator--(int) && { if (_M_k) --_M_value; } // intentionally hides const_where_expression::copy_from template <typename _Up, typename _Flags> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR void copy_from(const _LoadStorePtr<_Up, value_type>* __mem, _IsSimdFlagType<_Flags>) && { if (_M_k) _M_value = __mem[0]; } }; // where {{{1 template <typename _Tp, typename _Ap> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR where_expression<simd_mask<_Tp, _Ap>, simd<_Tp, _Ap>> where(const typename simd<_Tp, _Ap>::mask_type& __k, simd<_Tp, _Ap>& __value) { return {__k, __value}; } template <typename _Tp, typename _Ap> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR const_where_expression<simd_mask<_Tp, _Ap>, simd<_Tp, _Ap>> where(const typename simd<_Tp, _Ap>::mask_type& __k, const simd<_Tp, _Ap>& __value) { return {__k, __value}; } template <typename _Tp, typename _Ap> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR where_expression<simd_mask<_Tp, _Ap>, simd_mask<_Tp, _Ap>> where(const remove_const_t<simd_mask<_Tp, _Ap>>& __k, simd_mask<_Tp, _Ap>& __value) { return {__k, __value}; } template <typename _Tp, typename _Ap> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR const_where_expression<simd_mask<_Tp, _Ap>, simd_mask<_Tp, _Ap>> where(const remove_const_t<simd_mask<_Tp, _Ap>>& __k, const simd_mask<_Tp, _Ap>& __value) { return {__k, __value}; } template <typename _Tp> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR where_expression<bool, _Tp> where(_ExactBool __k, _Tp& __value) { return {__k, __value}; } template <typename _Tp> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR const_where_expression<bool, _Tp> where(_ExactBool __k, const _Tp& __value) { return {__k, __value}; } template <typename _Tp, typename _Ap> _GLIBCXX_SIMD_CONSTEXPR void where(bool __k, simd<_Tp, _Ap>& __value) = delete; template <typename _Tp, typename _Ap> _GLIBCXX_SIMD_CONSTEXPR void where(bool __k, const simd<_Tp, _Ap>& __value) = delete; // proposed mask iterations {{{1 namespace __proposed { template <size_t _Np> class where_range { const bitset<_Np> __bits; public: where_range(bitset<_Np> __b) : __bits(__b) {} class iterator { size_t __mask; size_t __bit; _GLIBCXX_SIMD_INTRINSIC void __next_bit() { __bit = __builtin_ctzl(__mask); } _GLIBCXX_SIMD_INTRINSIC void __reset_lsb() { // 01100100 - 1 = 01100011 __mask &= (__mask - 1); // __asm__("btr %1,%0" : "+r"(__mask) : "r"(__bit)); } public: iterator(decltype(__mask) __m) : __mask(__m) { __next_bit(); } iterator(const iterator&) = default; iterator(iterator&&) = default; _GLIBCXX_SIMD_ALWAYS_INLINE size_t operator->() const { return __bit; } _GLIBCXX_SIMD_ALWAYS_INLINE size_t operator*() const { return __bit; } _GLIBCXX_SIMD_ALWAYS_INLINE iterator& operator++() { __reset_lsb(); __next_bit(); return *this; } _GLIBCXX_SIMD_ALWAYS_INLINE iterator operator++(int) { iterator __tmp = *this; __reset_lsb(); __next_bit(); return __tmp; } _GLIBCXX_SIMD_ALWAYS_INLINE bool operator==(const iterator& __rhs) const { return __mask == __rhs.__mask; } _GLIBCXX_SIMD_ALWAYS_INLINE bool operator!=(const iterator& __rhs) const { return __mask != __rhs.__mask; } }; iterator begin() const { return __bits.to_ullong(); } iterator end() const { return 0; } }; template <typename _Tp, typename _Ap> where_range<simd_size_v<_Tp, _Ap>> where(const simd_mask<_Tp, _Ap>& __k) { return __k.__to_bitset(); } } // namespace __proposed // }}}1 // reductions [simd.reductions] {{{1 template <typename _Tp, typename _Abi, typename _BinaryOperation = plus<>> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _Tp reduce(const simd<_Tp, _Abi>& __v, _BinaryOperation __binary_op = _BinaryOperation()) { return _Abi::_SimdImpl::_S_reduce(__v, __binary_op); } template <typename _M, typename _V, typename _BinaryOperation = plus<>> _GLIBCXX_SIMD_INTRINSIC typename _V::value_type reduce(const const_where_expression<_M, _V>& __x, typename _V::value_type __identity_element, _BinaryOperation __binary_op) { if (__builtin_expect(none_of(__get_mask(__x)), false)) return __identity_element; _V __tmp = __identity_element; _V::_Impl::_S_masked_assign(__data(__get_mask(__x)), __data(__tmp), __data(__get_lvalue(__x))); return reduce(__tmp, __binary_op); } template <typename _M, typename _V> _GLIBCXX_SIMD_INTRINSIC typename _V::value_type reduce(const const_where_expression<_M, _V>& __x, plus<> __binary_op = {}) { return reduce(__x, 0, __binary_op); } template <typename _M, typename _V> _GLIBCXX_SIMD_INTRINSIC typename _V::value_type reduce(const const_where_expression<_M, _V>& __x, multiplies<> __binary_op) { return reduce(__x, 1, __binary_op); } template <typename _M, typename _V> _GLIBCXX_SIMD_INTRINSIC typename _V::value_type reduce(const const_where_expression<_M, _V>& __x, bit_and<> __binary_op) { return reduce(__x, ~typename _V::value_type(), __binary_op); } template <typename _M, typename _V> _GLIBCXX_SIMD_INTRINSIC typename _V::value_type reduce(const const_where_expression<_M, _V>& __x, bit_or<> __binary_op) { return reduce(__x, 0, __binary_op); } template <typename _M, typename _V> _GLIBCXX_SIMD_INTRINSIC typename _V::value_type reduce(const const_where_expression<_M, _V>& __x, bit_xor<> __binary_op) { return reduce(__x, 0, __binary_op); } template <typename _Tp, typename _Abi> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _Tp hmin(const simd<_Tp, _Abi>& __v) noexcept { return _Abi::_SimdImpl::_S_reduce(__v, __detail::_Minimum()); } template <typename _Tp, typename _Abi> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR _Tp hmax(const simd<_Tp, _Abi>& __v) noexcept { return _Abi::_SimdImpl::_S_reduce(__v, __detail::_Maximum()); } template <typename _M, typename _V> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR typename _V::value_type hmin(const const_where_expression<_M, _V>& __x) noexcept { using _Tp = typename _V::value_type; constexpr _Tp __id_elem = #ifdef __FINITE_MATH_ONLY__ __finite_max_v<_Tp>; #else __value_or<__infinity, _Tp>(__finite_max_v<_Tp>); #endif _V __tmp = __id_elem; _V::_Impl::_S_masked_assign(__data(__get_mask(__x)), __data(__tmp), __data(__get_lvalue(__x))); return _V::abi_type::_SimdImpl::_S_reduce(__tmp, __detail::_Minimum()); } template <typename _M, typename _V> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR typename _V::value_type hmax(const const_where_expression<_M, _V>& __x) noexcept { using _Tp = typename _V::value_type; constexpr _Tp __id_elem = #ifdef __FINITE_MATH_ONLY__ __finite_min_v<_Tp>; #else [] { if constexpr (__value_exists_v<__infinity, _Tp>) return -__infinity_v<_Tp>; else return __finite_min_v<_Tp>; }(); #endif _V __tmp = __id_elem; _V::_Impl::_S_masked_assign(__data(__get_mask(__x)), __data(__tmp), __data(__get_lvalue(__x))); return _V::abi_type::_SimdImpl::_S_reduce(__tmp, __detail::_Maximum()); } // }}}1 // algorithms [simd.alg] {{{ template <typename _Tp, typename _Ap> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap> min(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b) { return {__private_init, _Ap::_SimdImpl::_S_min(__data(__a), __data(__b))}; } template <typename _Tp, typename _Ap> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap> max(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b) { return {__private_init, _Ap::_SimdImpl::_S_max(__data(__a), __data(__b))}; } template <typename _Tp, typename _Ap> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR pair<simd<_Tp, _Ap>, simd<_Tp, _Ap>> minmax(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b) { const auto pair_of_members = _Ap::_SimdImpl::_S_minmax(__data(__a), __data(__b)); return {simd<_Tp, _Ap>(__private_init, pair_of_members.first), simd<_Tp, _Ap>(__private_init, pair_of_members.second)}; } template <typename _Tp, typename _Ap> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap> clamp(const simd<_Tp, _Ap>& __v, const simd<_Tp, _Ap>& __lo, const simd<_Tp, _Ap>& __hi) { using _Impl = typename _Ap::_SimdImpl; return {__private_init, _Impl::_S_min(__data(__hi), _Impl::_S_max(__data(__lo), __data(__v)))}; } // }}} template <size_t... _Sizes, typename _Tp, typename _Ap, typename = enable_if_t<((_Sizes + ...) == simd<_Tp, _Ap>::size())>> inline tuple<simd<_Tp, simd_abi::deduce_t<_Tp, _Sizes>>...> split(const simd<_Tp, _Ap>&); // __extract_part {{{ template <int _Index, int _Total, int _Combine = 1, typename _Tp, size_t _Np> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_CONST constexpr _SimdWrapper<_Tp, _Np / _Total * _Combine> __extract_part(const _SimdWrapper<_Tp, _Np> __x); template <int _Index, int _Parts, int _Combine = 1, typename _Tp, typename _A0, typename... _As> _GLIBCXX_SIMD_INTRINSIC constexpr auto __extract_part(const _SimdTuple<_Tp, _A0, _As...>& __x); // }}} // _SizeList {{{ template <size_t _V0, size_t... _Values> struct _SizeList { template <size_t _I> static constexpr size_t _S_at(_SizeConstant<_I> = {}) { if constexpr (_I == 0) return _V0; else return _SizeList<_Values...>::template _S_at<_I - 1>(); } template <size_t _I> static constexpr auto _S_before(_SizeConstant<_I> = {}) { if constexpr (_I == 0) return _SizeConstant<0>(); else return _SizeConstant< _V0 + _SizeList<_Values...>::template _S_before<_I - 1>()>(); } template <size_t _Np> static constexpr auto _S_pop_front(_SizeConstant<_Np> = {}) { if constexpr (_Np == 0) return _SizeList(); else return _SizeList<_Values...>::template _S_pop_front<_Np - 1>(); } }; // }}} // __extract_center {{{ template <typename _Tp, size_t _Np> _GLIBCXX_SIMD_INTRINSIC _SimdWrapper<_Tp, _Np / 2> __extract_center(_SimdWrapper<_Tp, _Np> __x) { static_assert(_Np >= 4); static_assert(_Np % 4 == 0); // x0 - x1 - x2 - x3 -> return {x1, x2} #if _GLIBCXX_SIMD_X86INTRIN // {{{ if constexpr (__have_avx512f && sizeof(_Tp) * _Np == 64) { const auto __intrin = __to_intrin(__x); if constexpr (is_integral_v<_Tp>) return __vector_bitcast<_Tp>(_mm512_castsi512_si256( _mm512_shuffle_i32x4(__intrin, __intrin, 1 + 2 * 0x4 + 2 * 0x10 + 3 * 0x40))); else if constexpr (sizeof(_Tp) == 4) return __vector_bitcast<_Tp>(_mm512_castps512_ps256( _mm512_shuffle_f32x4(__intrin, __intrin, 1 + 2 * 0x4 + 2 * 0x10 + 3 * 0x40))); else if constexpr (sizeof(_Tp) == 8) return __vector_bitcast<_Tp>(_mm512_castpd512_pd256( _mm512_shuffle_f64x2(__intrin, __intrin, 1 + 2 * 0x4 + 2 * 0x10 + 3 * 0x40))); else __assert_unreachable<_Tp>(); } else if constexpr (sizeof(_Tp) * _Np == 32 && is_floating_point_v<_Tp>) return __vector_bitcast<_Tp>( _mm_shuffle_pd(__lo128(__vector_bitcast<double>(__x)), __hi128(__vector_bitcast<double>(__x)), 1)); else if constexpr (sizeof(__x) == 32 && sizeof(_Tp) * _Np <= 32) return __vector_bitcast<_Tp>( _mm_alignr_epi8(__hi128(__vector_bitcast<_LLong>(__x)), __lo128(__vector_bitcast<_LLong>(__x)), sizeof(_Tp) * _Np / 4)); else #endif // _GLIBCXX_SIMD_X86INTRIN }}} { __vector_type_t<_Tp, _Np / 2> __r; __builtin_memcpy(&__r, reinterpret_cast<const char*>(&__x) + sizeof(_Tp) * _Np / 4, sizeof(_Tp) * _Np / 2); return __r; } } template <typename _Tp, typename _A0, typename... _As> _GLIBCXX_SIMD_INTRINSIC _SimdWrapper<_Tp, _SimdTuple<_Tp, _A0, _As...>::_S_size() / 2> __extract_center(const _SimdTuple<_Tp, _A0, _As...>& __x) { if constexpr (sizeof...(_As) == 0) return __extract_center(__x.first); else return __extract_part<1, 4, 2>(__x); } // }}} // __split_wrapper {{{ template <size_t... _Sizes, typename _Tp, typename... _As> auto __split_wrapper(_SizeList<_Sizes...>, const _SimdTuple<_Tp, _As...>& __x) { return split<_Sizes...>( fixed_size_simd<_Tp, _SimdTuple<_Tp, _As...>::_S_size()>(__private_init, __x)); } // }}} // split<simd>(simd) {{{ template <typename _V, typename _Ap, size_t _Parts = simd_size_v<typename _V::value_type, _Ap> / _V::size()> enable_if_t<simd_size_v<typename _V::value_type, _Ap> == _Parts * _V::size() && is_simd_v<_V>, array<_V, _Parts>> split(const simd<typename _V::value_type, _Ap>& __x) { using _Tp = typename _V::value_type; if constexpr (_Parts == 1) { return {simd_cast<_V>(__x)}; } else if (__x._M_is_constprop()) { return __generate_from_n_evaluations<_Parts, array<_V, _Parts>>( [&](auto __i) constexpr _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return _V([&](auto __j) constexpr _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return __x[__i * _V::size() + __j]; }); }); } else if constexpr ( __is_fixed_size_abi_v<_Ap> && (is_same_v<typename _V::abi_type, simd_abi::scalar> || (__is_fixed_size_abi_v<typename _V::abi_type> && sizeof(_V) == sizeof(_Tp) * _V::size() // _V doesn't have padding ))) { // fixed_size -> fixed_size (w/o padding) or scalar #ifdef _GLIBCXX_SIMD_USE_ALIASING_LOADS const __may_alias<_Tp>* const __element_ptr = reinterpret_cast<const __may_alias<_Tp>*>(&__data(__x)); return __generate_from_n_evaluations<_Parts, array<_V, _Parts>>( [&](auto __i) constexpr _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return _V(__element_ptr + __i * _V::size(), vector_aligned); }); #else const auto& __xx = __data(__x); return __generate_from_n_evaluations<_Parts, array<_V, _Parts>>( [&](auto __i) constexpr _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { [[maybe_unused]] constexpr size_t __offset = decltype(__i)::value * _V::size(); return _V([&](auto __j) constexpr _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { constexpr _SizeConstant<__j + __offset> __k; return __xx[__k]; }); }); #endif } else if constexpr (is_same_v<typename _V::abi_type, simd_abi::scalar>) { // normally memcpy should work here as well return __generate_from_n_evaluations<_Parts, array<_V, _Parts>>( [&](auto __i) constexpr _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return __x[__i]; }); } else { return __generate_from_n_evaluations<_Parts, array<_V, _Parts>>( [&](auto __i) constexpr _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { if constexpr (__is_fixed_size_abi_v<typename _V::abi_type>) return _V([&](auto __j) constexpr _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return __x[__i * _V::size() + __j]; }); else return _V(__private_init, __extract_part<decltype(__i)::value, _Parts>(__data(__x))); }); } } // }}} // split<simd_mask>(simd_mask) {{{ template <typename _V, typename _Ap, size_t _Parts = simd_size_v<typename _V::simd_type::value_type, _Ap> / _V::size()> enable_if_t<is_simd_mask_v<_V> && simd_size_v<typename _V::simd_type::value_type, _Ap> == _Parts * _V::size(), array<_V, _Parts>> split(const simd_mask<typename _V::simd_type::value_type, _Ap>& __x) { if constexpr (is_same_v<_Ap, typename _V::abi_type>) return {__x}; else if constexpr (_Parts == 1) return {__proposed::static_simd_cast<_V>(__x)}; else if constexpr (_Parts == 2 && __is_sse_abi<typename _V::abi_type>() && __is_avx_abi<_Ap>()) return {_V(__private_init, __lo128(__data(__x))), _V(__private_init, __hi128(__data(__x)))}; else if constexpr (_V::size() <= __CHAR_BIT__ * sizeof(_ULLong)) { const bitset __bits = __x.__to_bitset(); return __generate_from_n_evaluations<_Parts, array<_V, _Parts>>( [&](auto __i) constexpr _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { constexpr size_t __offset = __i * _V::size(); return _V(__bitset_init, (__bits >> __offset).to_ullong()); }); } else { return __generate_from_n_evaluations<_Parts, array<_V, _Parts>>( [&](auto __i) constexpr _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { constexpr size_t __offset = __i * _V::size(); return _V(__private_init, [&](auto __j) constexpr _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return __x[__j + __offset]; }); }); } } // }}} // split<_Sizes...>(simd) {{{ template <size_t... _Sizes, typename _Tp, typename _Ap, typename> _GLIBCXX_SIMD_ALWAYS_INLINE tuple<simd<_Tp, simd_abi::deduce_t<_Tp, _Sizes>>...> split(const simd<_Tp, _Ap>& __x) { using _SL = _SizeList<_Sizes...>; using _Tuple = tuple<__deduced_simd<_Tp, _Sizes>...>; constexpr size_t _Np = simd_size_v<_Tp, _Ap>; constexpr size_t _N0 = _SL::template _S_at<0>(); using _V = __deduced_simd<_Tp, _N0>; if (__x._M_is_constprop()) return __generate_from_n_evaluations<sizeof...(_Sizes), _Tuple>( [&](auto __i) constexpr _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { using _Vi = __deduced_simd<_Tp, _SL::_S_at(__i)>; constexpr size_t __offset = _SL::_S_before(__i); return _Vi([&](auto __j) constexpr _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return __x[__offset + __j]; }); }); else if constexpr (_Np == _N0) { static_assert(sizeof...(_Sizes) == 1); return {simd_cast<_V>(__x)}; } else if constexpr // split from fixed_size, such that __x::first.size == _N0 (__is_fixed_size_abi_v< _Ap> && __fixed_size_storage_t<_Tp, _Np>::_S_first_size == _N0) { static_assert( !__is_fixed_size_abi_v<typename _V::abi_type>, "How can <_Tp, _Np> be __a single _SimdTuple entry but __a " "fixed_size_simd " "when deduced?"); // extract first and recurse (__split_wrapper is needed to deduce a new // _Sizes pack) return tuple_cat(make_tuple(_V(__private_init, __data(__x).first)), __split_wrapper(_SL::template _S_pop_front<1>(), __data(__x).second)); } else if constexpr ((!is_same_v<simd_abi::scalar, simd_abi::deduce_t<_Tp, _Sizes>> && ...) && (!__is_fixed_size_abi_v< simd_abi::deduce_t<_Tp, _Sizes>> && ...)) { if constexpr (((_Sizes * 2 == _Np) && ...)) return {{__private_init, __extract_part<0, 2>(__data(__x))}, {__private_init, __extract_part<1, 2>(__data(__x))}}; else if constexpr (is_same_v<_SizeList<_Sizes...>, _SizeList<_Np / 3, _Np / 3, _Np / 3>>) return {{__private_init, __extract_part<0, 3>(__data(__x))}, {__private_init, __extract_part<1, 3>(__data(__x))}, {__private_init, __extract_part<2, 3>(__data(__x))}}; else if constexpr (is_same_v<_SizeList<_Sizes...>, _SizeList<2 * _Np / 3, _Np / 3>>) return {{__private_init, __extract_part<0, 3, 2>(__data(__x))}, {__private_init, __extract_part<2, 3>(__data(__x))}}; else if constexpr (is_same_v<_SizeList<_Sizes...>, _SizeList<_Np / 3, 2 * _Np / 3>>) return {{__private_init, __extract_part<0, 3>(__data(__x))}, {__private_init, __extract_part<1, 3, 2>(__data(__x))}}; else if constexpr (is_same_v<_SizeList<_Sizes...>, _SizeList<_Np / 2, _Np / 4, _Np / 4>>) return {{__private_init, __extract_part<0, 2>(__data(__x))}, {__private_init, __extract_part<2, 4>(__data(__x))}, {__private_init, __extract_part<3, 4>(__data(__x))}}; else if constexpr (is_same_v<_SizeList<_Sizes...>, _SizeList<_Np / 4, _Np / 4, _Np / 2>>) return {{__private_init, __extract_part<0, 4>(__data(__x))}, {__private_init, __extract_part<1, 4>(__data(__x))}, {__private_init, __extract_part<1, 2>(__data(__x))}}; else if constexpr (is_same_v<_SizeList<_Sizes...>, _SizeList<_Np / 4, _Np / 2, _Np / 4>>) return {{__private_init, __extract_part<0, 4>(__data(__x))}, {__private_init, __extract_center(__data(__x))}, {__private_init, __extract_part<3, 4>(__data(__x))}}; else if constexpr (((_Sizes * 4 == _Np) && ...)) return {{__private_init, __extract_part<0, 4>(__data(__x))}, {__private_init, __extract_part<1, 4>(__data(__x))}, {__private_init, __extract_part<2, 4>(__data(__x))}, {__private_init, __extract_part<3, 4>(__data(__x))}}; // else fall through } #ifdef _GLIBCXX_SIMD_USE_ALIASING_LOADS const __may_alias<_Tp>* const __element_ptr = reinterpret_cast<const __may_alias<_Tp>*>(&__x); return __generate_from_n_evaluations<sizeof...(_Sizes), _Tuple>( [&](auto __i) constexpr _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { using _Vi = __deduced_simd<_Tp, _SL::_S_at(__i)>; constexpr size_t __offset = _SL::_S_before(__i); constexpr size_t __base_align = alignof(simd<_Tp, _Ap>); constexpr size_t __a = __base_align - ((__offset * sizeof(_Tp)) % __base_align); constexpr size_t __b = ((__a - 1) & __a) ^ __a; constexpr size_t __alignment = __b == 0 ? __a : __b; return _Vi(__element_ptr + __offset, overaligned<__alignment>); }); #else return __generate_from_n_evaluations<sizeof...(_Sizes), _Tuple>( [&](auto __i) constexpr _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { using _Vi = __deduced_simd<_Tp, _SL::_S_at(__i)>; const auto& __xx = __data(__x); using _Offset = decltype(_SL::_S_before(__i)); return _Vi([&](auto __j) constexpr _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { constexpr _SizeConstant<_Offset::value + __j> __k; return __xx[__k]; }); }); #endif } // }}} // __subscript_in_pack {{{ template <size_t _I, typename _Tp, typename _Ap, typename... _As> _GLIBCXX_SIMD_INTRINSIC constexpr _Tp __subscript_in_pack(const simd<_Tp, _Ap>& __x, const simd<_Tp, _As>&... __xs) { if constexpr (_I < simd_size_v<_Tp, _Ap>) return __x[_I]; else return __subscript_in_pack<_I - simd_size_v<_Tp, _Ap>>(__xs...); } // }}} // __store_pack_of_simd {{{ template <typename _Tp, typename _A0, typename... _As> _GLIBCXX_SIMD_INTRINSIC void __store_pack_of_simd(char* __mem, const simd<_Tp, _A0>& __x0, const simd<_Tp, _As>&... __xs) { constexpr size_t __n_bytes = sizeof(_Tp) * simd_size_v<_Tp, _A0>; __builtin_memcpy(__mem, &__data(__x0), __n_bytes); if constexpr (sizeof...(__xs) > 0) __store_pack_of_simd(__mem + __n_bytes, __xs...); } // }}} // concat(simd...) {{{ template <typename _Tp, typename... _As> inline _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, simd_abi::deduce_t<_Tp, (simd_size_v<_Tp, _As> + ...)>> concat(const simd<_Tp, _As>&... __xs) { using _Rp = __deduced_simd<_Tp, (simd_size_v<_Tp, _As> + ...)>; if constexpr (sizeof...(__xs) == 1) return simd_cast<_Rp>(__xs...); else if ((... && __xs._M_is_constprop())) return simd<_Tp, simd_abi::deduce_t<_Tp, (simd_size_v<_Tp, _As> + ...)>>( [&](auto __i) constexpr _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return __subscript_in_pack<__i>(__xs...); }); else { _Rp __r{}; __store_pack_of_simd(reinterpret_cast<char*>(&__data(__r)), __xs...); return __r; } } // }}} // concat(array<simd>) {{{ template <typename _Tp, typename _Abi, size_t _Np> _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR __deduced_simd<_Tp, simd_size_v<_Tp, _Abi> * _Np> concat(const array<simd<_Tp, _Abi>, _Np>& __x) { return __call_with_subscripts<_Np>( __x, [](const auto&... __xs) _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return concat(__xs...); }); } // }}} /// @cond undocumented // _SmartReference {{{ template <typename _Up, typename _Accessor = _Up, typename _ValueType = typename _Up::value_type> class _SmartReference { friend _Accessor; int _M_index; _Up& _M_obj; _GLIBCXX_SIMD_INTRINSIC constexpr _ValueType _M_read() const noexcept { if constexpr (is_arithmetic_v<_Up>) return _M_obj; else return _M_obj[_M_index]; } template <typename _Tp> _GLIBCXX_SIMD_INTRINSIC constexpr void _M_write(_Tp&& __x) const { _Accessor::_S_set(_M_obj, _M_index, static_cast<_Tp&&>(__x)); } public: _GLIBCXX_SIMD_INTRINSIC constexpr _SmartReference(_Up& __o, int __i) noexcept : _M_index(__i), _M_obj(__o) {} using value_type = _ValueType; _GLIBCXX_SIMD_INTRINSIC _SmartReference(const _SmartReference&) = delete; _GLIBCXX_SIMD_INTRINSIC constexpr operator value_type() const noexcept { return _M_read(); } template <typename _Tp, typename = _ValuePreservingOrInt<__remove_cvref_t<_Tp>, value_type>> _GLIBCXX_SIMD_INTRINSIC constexpr _SmartReference operator=(_Tp&& __x) && { _M_write(static_cast<_Tp&&>(__x)); return {_M_obj, _M_index}; } #define _GLIBCXX_SIMD_OP_(__op) \ template <typename _Tp, \ typename _TT = decltype(declval<value_type>() __op declval<_Tp>()), \ typename = _ValuePreservingOrInt<__remove_cvref_t<_Tp>, _TT>, \ typename = _ValuePreservingOrInt<_TT, value_type>> \ _GLIBCXX_SIMD_INTRINSIC constexpr _SmartReference \ operator __op##=(_Tp&& __x) && \ { \ const value_type& __lhs = _M_read(); \ _M_write(__lhs __op __x); \ return {_M_obj, _M_index}; \ } _GLIBCXX_SIMD_ALL_ARITHMETICS(_GLIBCXX_SIMD_OP_); _GLIBCXX_SIMD_ALL_SHIFTS(_GLIBCXX_SIMD_OP_); _GLIBCXX_SIMD_ALL_BINARY(_GLIBCXX_SIMD_OP_); #undef _GLIBCXX_SIMD_OP_ template <typename _Tp = void, typename = decltype(++declval<conditional_t<true, value_type, _Tp>&>())> _GLIBCXX_SIMD_INTRINSIC constexpr _SmartReference operator++() && { value_type __x = _M_read(); _M_write(++__x); return {_M_obj, _M_index}; } template <typename _Tp = void, typename = decltype(declval<conditional_t<true, value_type, _Tp>&>()++)> _GLIBCXX_SIMD_INTRINSIC constexpr value_type operator++(int) && { const value_type __r = _M_read(); value_type __x = __r; _M_write(++__x); return __r; } template <typename _Tp = void, typename = decltype(--declval<conditional_t<true, value_type, _Tp>&>())> _GLIBCXX_SIMD_INTRINSIC constexpr _SmartReference operator--() && { value_type __x = _M_read(); _M_write(--__x); return {_M_obj, _M_index}; } template <typename _Tp = void, typename = decltype(declval<conditional_t<true, value_type, _Tp>&>()--)> _GLIBCXX_SIMD_INTRINSIC constexpr value_type operator--(int) && { const value_type __r = _M_read(); value_type __x = __r; _M_write(--__x); return __r; } _GLIBCXX_SIMD_INTRINSIC friend void swap(_SmartReference&& __a, _SmartReference&& __b) noexcept( conjunction< is_nothrow_constructible<value_type, _SmartReference&&>, is_nothrow_assignable<_SmartReference&&, value_type&&>>::value) { value_type __tmp = static_cast<_SmartReference&&>(__a); static_cast<_SmartReference&&>(__a) = static_cast<value_type>(__b); static_cast<_SmartReference&&>(__b) = std::move(__tmp); } _GLIBCXX_SIMD_INTRINSIC friend void swap(value_type& __a, _SmartReference&& __b) noexcept( conjunction< is_nothrow_constructible<value_type, value_type&&>, is_nothrow_assignable<value_type&, value_type&&>, is_nothrow_assignable<_SmartReference&&, value_type&&>>::value) { value_type __tmp(std::move(__a)); __a = static_cast<value_type>(__b); static_cast<_SmartReference&&>(__b) = std::move(__tmp); } _GLIBCXX_SIMD_INTRINSIC friend void swap(_SmartReference&& __a, value_type& __b) noexcept( conjunction< is_nothrow_constructible<value_type, _SmartReference&&>, is_nothrow_assignable<value_type&, value_type&&>, is_nothrow_assignable<_SmartReference&&, value_type&&>>::value) { value_type __tmp(__a); static_cast<_SmartReference&&>(__a) = std::move(__b); __b = std::move(__tmp); } }; // }}} // __scalar_abi_wrapper {{{ template <int _Bytes> struct __scalar_abi_wrapper { template <typename _Tp> static constexpr size_t _S_full_size = 1; template <typename _Tp> static constexpr size_t _S_size = 1; template <typename _Tp> static constexpr size_t _S_is_partial = false; template <typename _Tp, typename _Abi = simd_abi::scalar> static constexpr bool _S_is_valid_v = _Abi::template _IsValid<_Tp>::value && sizeof(_Tp) == _Bytes; }; // }}} // __decay_abi metafunction {{{ template <typename _Tp> struct __decay_abi { using type = _Tp; }; template <int _Bytes> struct __decay_abi<__scalar_abi_wrapper<_Bytes>> { using type = simd_abi::scalar; }; // }}} // __find_next_valid_abi metafunction {{{1 // Given an ABI tag A<N>, find an N2 < N such that A<N2>::_S_is_valid_v<_Tp> == // true, N2 is a power-of-2, and A<N2>::_S_is_partial<_Tp> is false. Break // recursion at 2 elements in the resulting ABI tag. In this case // type::_S_is_valid_v<_Tp> may be false. template <template <int> class _Abi, int _Bytes, typename _Tp> struct __find_next_valid_abi { static constexpr auto _S_choose() { constexpr int _NextBytes = std::__bit_ceil(_Bytes) / 2; using _NextAbi = _Abi<_NextBytes>; if constexpr (_NextBytes < sizeof(_Tp) * 2) // break recursion return _Abi<_Bytes>(); else if constexpr (_NextAbi::template _S_is_partial<_Tp> == false && _NextAbi::template _S_is_valid_v<_Tp>) return _NextAbi(); else return __find_next_valid_abi<_Abi, _NextBytes, _Tp>::_S_choose(); } using type = decltype(_S_choose()); }; template <int _Bytes, typename _Tp> struct __find_next_valid_abi<__scalar_abi_wrapper, _Bytes, _Tp> { using type = simd_abi::scalar; }; // _AbiList {{{1 template <template <int> class...> struct _AbiList { template <typename, int> static constexpr bool _S_has_valid_abi = false; template <typename, int> using _FirstValidAbi = void; template <typename, int> using _BestAbi = void; }; template <template <int> class _A0, template <int> class... _Rest> struct _AbiList<_A0, _Rest...> { template <typename _Tp, int _Np> static constexpr bool _S_has_valid_abi = _A0<sizeof(_Tp) * _Np>::template _S_is_valid_v< _Tp> || _AbiList<_Rest...>::template _S_has_valid_abi<_Tp, _Np>; template <typename _Tp, int _Np> using _FirstValidAbi = conditional_t< _A0<sizeof(_Tp) * _Np>::template _S_is_valid_v<_Tp>, typename __decay_abi<_A0<sizeof(_Tp) * _Np>>::type, typename _AbiList<_Rest...>::template _FirstValidAbi<_Tp, _Np>>; template <typename _Tp, int _Np> static constexpr auto _S_determine_best_abi() { static_assert(_Np >= 1); constexpr int _Bytes = sizeof(_Tp) * _Np; if constexpr (_Np == 1) return __make_dependent_t<_Tp, simd_abi::scalar>{}; else { constexpr int __fullsize = _A0<_Bytes>::template _S_full_size<_Tp>; // _A0<_Bytes> is good if: // 1. The ABI tag is valid for _Tp // 2. The storage overhead is no more than padding to fill the next // power-of-2 number of bytes if constexpr (_A0<_Bytes>::template _S_is_valid_v< _Tp> && __fullsize / 2 < _Np) return typename __decay_abi<_A0<_Bytes>>::type{}; else { using _Bp = typename __find_next_valid_abi<_A0, _Bytes, _Tp>::type; if constexpr (_Bp::template _S_is_valid_v< _Tp> && _Bp::template _S_size<_Tp> <= _Np) return _Bp{}; else return typename _AbiList<_Rest...>::template _BestAbi<_Tp, _Np>{}; } } } template <typename _Tp, int _Np> using _BestAbi = decltype(_S_determine_best_abi<_Tp, _Np>()); }; // }}}1 // the following lists all native ABIs, which makes them accessible to // simd_abi::deduce and select_best_vector_type_t (for fixed_size). Order // matters: Whatever comes first has higher priority. using _AllNativeAbis = _AbiList<simd_abi::_VecBltnBtmsk, simd_abi::_VecBuiltin, __scalar_abi_wrapper>; // valid _SimdTraits specialization {{{1 template <typename _Tp, typename _Abi> struct _SimdTraits<_Tp, _Abi, void_t<typename _Abi::template _IsValid<_Tp>>> : _Abi::template __traits<_Tp> {}; // __deduce_impl specializations {{{1 // try all native ABIs (including scalar) first template <typename _Tp, size_t _Np> struct __deduce_impl< _Tp, _Np, enable_if_t<_AllNativeAbis::template _S_has_valid_abi<_Tp, _Np>>> { using type = _AllNativeAbis::_FirstValidAbi<_Tp, _Np>; }; // fall back to fixed_size only if scalar and native ABIs don't match template <typename _Tp, size_t _Np, typename = void> struct __deduce_fixed_size_fallback {}; template <typename _Tp, size_t _Np> struct __deduce_fixed_size_fallback<_Tp, _Np, enable_if_t<simd_abi::fixed_size<_Np>::template _S_is_valid_v<_Tp>>> { using type = simd_abi::fixed_size<_Np>; }; template <typename _Tp, size_t _Np, typename> struct __deduce_impl : public __deduce_fixed_size_fallback<_Tp, _Np> {}; //}}}1 /// @endcond // simd_mask {{{ template <typename _Tp, typename _Abi> class simd_mask : public _SimdTraits<_Tp, _Abi>::_MaskBase { // types, tags, and friends {{{ using _Traits = _SimdTraits<_Tp, _Abi>; using _MemberType = typename _Traits::_MaskMember; // We map all masks with equal element sizeof to a single integer type, the // one given by __int_for_sizeof_t<_Tp>. This is the approach // [[gnu::vector_size(N)]] types take as well and it reduces the number of // template specializations in the implementation classes. using _Ip = __int_for_sizeof_t<_Tp>; static constexpr _Ip* _S_type_tag = nullptr; friend typename _Traits::_MaskBase; friend class simd<_Tp, _Abi>; // to construct masks on return friend typename _Traits::_SimdImpl; // to construct masks on return and // inspect data on masked operations public: using _Impl = typename _Traits::_MaskImpl; friend _Impl; // }}} // member types {{{ using value_type = bool; using reference = _SmartReference<_MemberType, _Impl, value_type>; using simd_type = simd<_Tp, _Abi>; using abi_type = _Abi; // }}} static constexpr size_t size() // {{{ { return __size_or_zero_v<_Tp, _Abi>; } // }}} // constructors & assignment {{{ simd_mask() = default; simd_mask(const simd_mask&) = default; simd_mask(simd_mask&&) = default; simd_mask& operator=(const simd_mask&) = default; simd_mask& operator=(simd_mask&&) = default; // }}} // access to internal representation (optional feature) {{{ _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR explicit simd_mask(typename _Traits::_MaskCastType __init) : _M_data{__init} {} // conversions to internal type is done in _MaskBase // }}} // bitset interface (extension to be proposed) {{{ // TS_FEEDBACK: // Conversion of simd_mask to and from bitset makes it much easier to // interface with other facilities. I suggest adding `static // simd_mask::from_bitset` and `simd_mask::to_bitset`. _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR static simd_mask __from_bitset(bitset<size()> bs) { return {__bitset_init, bs}; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bitset<size()> __to_bitset() const { return _Impl::_S_to_bits(_M_data)._M_to_bitset(); } // }}} // explicit broadcast constructor {{{ _GLIBCXX_SIMD_ALWAYS_INLINE explicit _GLIBCXX_SIMD_CONSTEXPR simd_mask(value_type __x) : _M_data(_Impl::template _S_broadcast<_Ip>(__x)) {} // }}} // implicit type conversion constructor {{{ #ifdef _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST // proposed improvement template <typename _Up, typename _A2, typename = enable_if_t<simd_size_v<_Up, _A2> == size()>> _GLIBCXX_SIMD_ALWAYS_INLINE explicit(sizeof(_MemberType) != sizeof(typename _SimdTraits<_Up, _A2>::_MaskMember)) simd_mask(const simd_mask<_Up, _A2>& __x) : simd_mask(__proposed::static_simd_cast<simd_mask>(__x)) {} #else // conforming to ISO/IEC 19570:2018 template <typename _Up, typename = enable_if_t<conjunction< is_same<abi_type, simd_abi::fixed_size<size()>>, is_same<_Up, _Up>>::value>> _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd_mask(const simd_mask<_Up, simd_abi::fixed_size<size()>>& __x) : _M_data(_Impl::_S_from_bitmask(__data(__x), _S_type_tag)) {} #endif // }}} // load constructor {{{ template <typename _Flags> _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd_mask(const value_type* __mem, _IsSimdFlagType<_Flags>) : _M_data(_Impl::template _S_load<_Ip>(_Flags::template _S_apply<simd_mask>(__mem))) {} template <typename _Flags> _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd_mask(const value_type* __mem, simd_mask __k, _IsSimdFlagType<_Flags>) : _M_data{} { _M_data = _Impl::_S_masked_load(_M_data, __k._M_data, _Flags::template _S_apply<simd_mask>(__mem)); } // }}} // loads [simd_mask.load] {{{ template <typename _Flags> _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR void copy_from(const value_type* __mem, _IsSimdFlagType<_Flags>) { _M_data = _Impl::template _S_load<_Ip>(_Flags::template _S_apply<simd_mask>(__mem)); } // }}} // stores [simd_mask.store] {{{ template <typename _Flags> _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR void copy_to(value_type* __mem, _IsSimdFlagType<_Flags>) const { _Impl::_S_store(_M_data, _Flags::template _S_apply<simd_mask>(__mem)); } // }}} // scalar access {{{ _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR reference operator[](size_t __i) { if (__i >= size()) __invoke_ub("Subscript %d is out of range [0, %d]", __i, size() - 1); return {_M_data, int(__i)}; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR value_type operator[](size_t __i) const { if (__i >= size()) __invoke_ub("Subscript %d is out of range [0, %d]", __i, size() - 1); if constexpr (__is_scalar_abi<_Abi>()) return _M_data; else return static_cast<bool>(_M_data[__i]); } // }}} // negation {{{ _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd_mask operator!() const { return {__private_init, _Impl::_S_bit_not(_M_data)}; } // }}} // simd_mask binary operators [simd_mask.binary] {{{ #ifdef _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST // simd_mask<int> && simd_mask<uint> needs disambiguation template <typename _Up, typename _A2, typename = enable_if_t<is_convertible_v<simd_mask<_Up, _A2>, simd_mask>>> _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask operator&&(const simd_mask& __x, const simd_mask<_Up, _A2>& __y) { return {__private_init, _Impl::_S_logical_and(__x._M_data, simd_mask(__y)._M_data)}; } template <typename _Up, typename _A2, typename = enable_if_t<is_convertible_v<simd_mask<_Up, _A2>, simd_mask>>> _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask operator||(const simd_mask& __x, const simd_mask<_Up, _A2>& __y) { return {__private_init, _Impl::_S_logical_or(__x._M_data, simd_mask(__y)._M_data)}; } #endif // _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask operator&&(const simd_mask& __x, const simd_mask& __y) { return {__private_init, _Impl::_S_logical_and(__x._M_data, __y._M_data)}; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask operator||(const simd_mask& __x, const simd_mask& __y) { return {__private_init, _Impl::_S_logical_or(__x._M_data, __y._M_data)}; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask operator&(const simd_mask& __x, const simd_mask& __y) { return {__private_init, _Impl::_S_bit_and(__x._M_data, __y._M_data)}; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask operator|(const simd_mask& __x, const simd_mask& __y) { return {__private_init, _Impl::_S_bit_or(__x._M_data, __y._M_data)}; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask operator^(const simd_mask& __x, const simd_mask& __y) { return {__private_init, _Impl::_S_bit_xor(__x._M_data, __y._M_data)}; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask& operator&=(simd_mask& __x, const simd_mask& __y) { __x._M_data = _Impl::_S_bit_and(__x._M_data, __y._M_data); return __x; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask& operator|=(simd_mask& __x, const simd_mask& __y) { __x._M_data = _Impl::_S_bit_or(__x._M_data, __y._M_data); return __x; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask& operator^=(simd_mask& __x, const simd_mask& __y) { __x._M_data = _Impl::_S_bit_xor(__x._M_data, __y._M_data); return __x; } // }}} // simd_mask compares [simd_mask.comparison] {{{ _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask operator==(const simd_mask& __x, const simd_mask& __y) { return !operator!=(__x, __y); } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask operator!=(const simd_mask& __x, const simd_mask& __y) { return {__private_init, _Impl::_S_bit_xor(__x._M_data, __y._M_data)}; } // }}} // private_init ctor {{{ _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd_mask(_PrivateInit, typename _Traits::_MaskMember __init) : _M_data(__init) {} // }}} // private_init generator ctor {{{ template <typename _Fp, typename = decltype(bool(declval<_Fp>()(size_t())))> _GLIBCXX_SIMD_INTRINSIC constexpr simd_mask(_PrivateInit, _Fp&& __gen) : _M_data() { __execute_n_times<size()>([&](auto __i) constexpr _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { _Impl::_S_set(_M_data, __i, __gen(__i)); }); } // }}} // bitset_init ctor {{{ _GLIBCXX_SIMD_INTRINSIC constexpr simd_mask(_BitsetInit, bitset<size()> __init) : _M_data(_Impl::_S_from_bitmask(_SanitizedBitMask<size()>(__init), _S_type_tag)) {} // }}} // __cvt {{{ // TS_FEEDBACK: // The conversion operator this implements should be a ctor on simd_mask. // Once you call .__cvt() on a simd_mask it converts conveniently. // A useful variation: add `explicit(sizeof(_Tp) != sizeof(_Up))` struct _CvtProxy { template <typename _Up, typename _A2, typename = enable_if_t<simd_size_v<_Up, _A2> == simd_size_v<_Tp, _Abi>>> operator simd_mask<_Up, _A2>() && { using namespace std::experimental::__proposed; return static_simd_cast<simd_mask<_Up, _A2>>(_M_data); } const simd_mask<_Tp, _Abi>& _M_data; }; _GLIBCXX_SIMD_INTRINSIC _CvtProxy __cvt() const { return {*this}; } // }}} // operator?: overloads (suggested extension) {{{ #ifdef __GXX_CONDITIONAL_IS_OVERLOADABLE__ _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask operator?:(const simd_mask& __k, const simd_mask& __where_true, const simd_mask& __where_false) { auto __ret = __where_false; _Impl::_S_masked_assign(__k._M_data, __ret._M_data, __where_true._M_data); return __ret; } template <typename _U1, typename _U2, typename _Rp = simd<common_type_t<_U1, _U2>, _Abi>, typename = enable_if_t<conjunction_v< is_convertible<_U1, _Rp>, is_convertible<_U2, _Rp>, is_convertible<simd_mask, typename _Rp::mask_type>>>> _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend _Rp operator?:(const simd_mask& __k, const _U1& __where_true, const _U2& __where_false) { _Rp __ret = __where_false; _Rp::_Impl::_S_masked_assign( __data(static_cast<typename _Rp::mask_type>(__k)), __data(__ret), __data(static_cast<_Rp>(__where_true))); return __ret; } #ifdef _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST template <typename _Kp, typename _Ak, typename _Up, typename _Au, typename = enable_if_t< conjunction_v<is_convertible<simd_mask<_Kp, _Ak>, simd_mask>, is_convertible<simd_mask<_Up, _Au>, simd_mask>>>> _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd_mask operator?:(const simd_mask<_Kp, _Ak>& __k, const simd_mask& __where_true, const simd_mask<_Up, _Au>& __where_false) { simd_mask __ret = __where_false; _Impl::_S_masked_assign(simd_mask(__k)._M_data, __ret._M_data, __where_true._M_data); return __ret; } #endif // _GLIBCXX_SIMD_ENABLE_IMPLICIT_MASK_CAST #endif // __GXX_CONDITIONAL_IS_OVERLOADABLE__ // }}} // _M_is_constprop {{{ _GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop() const { if constexpr (__is_scalar_abi<_Abi>()) return __builtin_constant_p(_M_data); else return _M_data._M_is_constprop(); } // }}} private: friend const auto& __data<_Tp, abi_type>(const simd_mask&); friend auto& __data<_Tp, abi_type>(simd_mask&); alignas(_Traits::_S_mask_align) _MemberType _M_data; }; // }}} /// @cond undocumented // __data(simd_mask) {{{ template <typename _Tp, typename _Ap> _GLIBCXX_SIMD_INTRINSIC constexpr const auto& __data(const simd_mask<_Tp, _Ap>& __x) { return __x._M_data; } template <typename _Tp, typename _Ap> _GLIBCXX_SIMD_INTRINSIC constexpr auto& __data(simd_mask<_Tp, _Ap>& __x) { return __x._M_data; } // }}} /// @endcond // simd_mask reductions [simd_mask.reductions] {{{ template <typename _Tp, typename _Abi> _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool all_of(const simd_mask<_Tp, _Abi>& __k) noexcept { if (__builtin_is_constant_evaluated() || __k._M_is_constprop()) { for (size_t __i = 0; __i < simd_size_v<_Tp, _Abi>; ++__i) if (!__k[__i]) return false; return true; } else return _Abi::_MaskImpl::_S_all_of(__k); } template <typename _Tp, typename _Abi> _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool any_of(const simd_mask<_Tp, _Abi>& __k) noexcept { if (__builtin_is_constant_evaluated() || __k._M_is_constprop()) { for (size_t __i = 0; __i < simd_size_v<_Tp, _Abi>; ++__i) if (__k[__i]) return true; return false; } else return _Abi::_MaskImpl::_S_any_of(__k); } template <typename _Tp, typename _Abi> _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool none_of(const simd_mask<_Tp, _Abi>& __k) noexcept { if (__builtin_is_constant_evaluated() || __k._M_is_constprop()) { for (size_t __i = 0; __i < simd_size_v<_Tp, _Abi>; ++__i) if (__k[__i]) return false; return true; } else return _Abi::_MaskImpl::_S_none_of(__k); } template <typename _Tp, typename _Abi> _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool some_of(const simd_mask<_Tp, _Abi>& __k) noexcept { if (__builtin_is_constant_evaluated() || __k._M_is_constprop()) { for (size_t __i = 1; __i < simd_size_v<_Tp, _Abi>; ++__i) if (__k[__i] != __k[__i - 1]) return true; return false; } else return _Abi::_MaskImpl::_S_some_of(__k); } template <typename _Tp, typename _Abi> _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int popcount(const simd_mask<_Tp, _Abi>& __k) noexcept { if (__builtin_is_constant_evaluated() || __k._M_is_constprop()) { const int __r = __call_with_subscripts<simd_size_v<_Tp, _Abi>>( __k, [](auto... __elements) _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return ((__elements != 0) + ...); }); if (__builtin_is_constant_evaluated() || __builtin_constant_p(__r)) return __r; } return _Abi::_MaskImpl::_S_popcount(__k); } template <typename _Tp, typename _Abi> _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int find_first_set(const simd_mask<_Tp, _Abi>& __k) { if (__builtin_is_constant_evaluated() || __k._M_is_constprop()) { constexpr size_t _Np = simd_size_v<_Tp, _Abi>; const size_t _Idx = __call_with_n_evaluations<_Np>( [](auto... __indexes) _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return std::min({__indexes...}); }, [&](auto __i) _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return __k[__i] ? +__i : _Np; }); if (_Idx >= _Np) __invoke_ub("find_first_set(empty mask) is UB"); if (__builtin_constant_p(_Idx)) return _Idx; } return _Abi::_MaskImpl::_S_find_first_set(__k); } template <typename _Tp, typename _Abi> _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int find_last_set(const simd_mask<_Tp, _Abi>& __k) { if (__builtin_is_constant_evaluated() || __k._M_is_constprop()) { constexpr size_t _Np = simd_size_v<_Tp, _Abi>; const int _Idx = __call_with_n_evaluations<_Np>( [](auto... __indexes) _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return std::max({__indexes...}); }, [&](auto __i) _GLIBCXX_SIMD_ALWAYS_INLINE_LAMBDA { return __k[__i] ? int(__i) : -1; }); if (_Idx < 0) __invoke_ub("find_first_set(empty mask) is UB"); if (__builtin_constant_p(_Idx)) return _Idx; } return _Abi::_MaskImpl::_S_find_last_set(__k); } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool all_of(_ExactBool __x) noexcept { return __x; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool any_of(_ExactBool __x) noexcept { return __x; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool none_of(_ExactBool __x) noexcept { return !__x; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR bool some_of(_ExactBool) noexcept { return false; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int popcount(_ExactBool __x) noexcept { return __x; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int find_first_set(_ExactBool) { return 0; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR int find_last_set(_ExactBool) { return 0; } // }}} /// @cond undocumented // _SimdIntOperators{{{1 template <typename _V, typename _Impl, bool> class _SimdIntOperators {}; template <typename _V, typename _Impl> class _SimdIntOperators<_V, _Impl, true> { _GLIBCXX_SIMD_INTRINSIC constexpr const _V& __derived() const { return *static_cast<const _V*>(this); } template <typename _Tp> _GLIBCXX_SIMD_INTRINSIC static _GLIBCXX_SIMD_CONSTEXPR _V _S_make_derived(_Tp&& __d) { return {__private_init, static_cast<_Tp&&>(__d)}; } public: _GLIBCXX_SIMD_CONSTEXPR friend _V& operator%=(_V& __lhs, const _V& __x) { return __lhs = __lhs % __x; } _GLIBCXX_SIMD_CONSTEXPR friend _V& operator&=(_V& __lhs, const _V& __x) { return __lhs = __lhs & __x; } _GLIBCXX_SIMD_CONSTEXPR friend _V& operator|=(_V& __lhs, const _V& __x) { return __lhs = __lhs | __x; } _GLIBCXX_SIMD_CONSTEXPR friend _V& operator^=(_V& __lhs, const _V& __x) { return __lhs = __lhs ^ __x; } _GLIBCXX_SIMD_CONSTEXPR friend _V& operator<<=(_V& __lhs, const _V& __x) { return __lhs = __lhs << __x; } _GLIBCXX_SIMD_CONSTEXPR friend _V& operator>>=(_V& __lhs, const _V& __x) { return __lhs = __lhs >> __x; } _GLIBCXX_SIMD_CONSTEXPR friend _V& operator<<=(_V& __lhs, int __x) { return __lhs = __lhs << __x; } _GLIBCXX_SIMD_CONSTEXPR friend _V& operator>>=(_V& __lhs, int __x) { return __lhs = __lhs >> __x; } _GLIBCXX_SIMD_CONSTEXPR friend _V operator%(const _V& __x, const _V& __y) { return _SimdIntOperators::_S_make_derived( _Impl::_S_modulus(__data(__x), __data(__y))); } _GLIBCXX_SIMD_CONSTEXPR friend _V operator&(const _V& __x, const _V& __y) { return _SimdIntOperators::_S_make_derived( _Impl::_S_bit_and(__data(__x), __data(__y))); } _GLIBCXX_SIMD_CONSTEXPR friend _V operator|(const _V& __x, const _V& __y) { return _SimdIntOperators::_S_make_derived( _Impl::_S_bit_or(__data(__x), __data(__y))); } _GLIBCXX_SIMD_CONSTEXPR friend _V operator^(const _V& __x, const _V& __y) { return _SimdIntOperators::_S_make_derived( _Impl::_S_bit_xor(__data(__x), __data(__y))); } _GLIBCXX_SIMD_CONSTEXPR friend _V operator<<(const _V& __x, const _V& __y) { return _SimdIntOperators::_S_make_derived( _Impl::_S_bit_shift_left(__data(__x), __data(__y))); } _GLIBCXX_SIMD_CONSTEXPR friend _V operator>>(const _V& __x, const _V& __y) { return _SimdIntOperators::_S_make_derived( _Impl::_S_bit_shift_right(__data(__x), __data(__y))); } template <typename _VV = _V> _GLIBCXX_SIMD_CONSTEXPR friend _V operator<<(const _V& __x, int __y) { using _Tp = typename _VV::value_type; if (__y < 0) __invoke_ub("The behavior is undefined if the right operand of a " "shift operation is negative. [expr.shift]\nA shift by " "%d was requested", __y); if (size_t(__y) >= sizeof(declval<_Tp>() << __y) * __CHAR_BIT__) __invoke_ub( "The behavior is undefined if the right operand of a " "shift operation is greater than or equal to the width of the " "promoted left operand. [expr.shift]\nA shift by %d was requested", __y); return _SimdIntOperators::_S_make_derived( _Impl::_S_bit_shift_left(__data(__x), __y)); } template <typename _VV = _V> _GLIBCXX_SIMD_CONSTEXPR friend _V operator>>(const _V& __x, int __y) { using _Tp = typename _VV::value_type; if (__y < 0) __invoke_ub( "The behavior is undefined if the right operand of a shift " "operation is negative. [expr.shift]\nA shift by %d was requested", __y); if (size_t(__y) >= sizeof(declval<_Tp>() << __y) * __CHAR_BIT__) __invoke_ub( "The behavior is undefined if the right operand of a shift " "operation is greater than or equal to the width of the promoted " "left operand. [expr.shift]\nA shift by %d was requested", __y); return _SimdIntOperators::_S_make_derived( _Impl::_S_bit_shift_right(__data(__x), __y)); } // unary operators (for integral _Tp) _GLIBCXX_SIMD_CONSTEXPR _V operator~() const { return {__private_init, _Impl::_S_complement(__derived()._M_data)}; } }; //}}}1 /// @endcond // simd {{{ template <typename _Tp, typename _Abi> class simd : public _SimdIntOperators< simd<_Tp, _Abi>, typename _SimdTraits<_Tp, _Abi>::_SimdImpl, conjunction<is_integral<_Tp>, typename _SimdTraits<_Tp, _Abi>::_IsValid>::value>, public _SimdTraits<_Tp, _Abi>::_SimdBase { using _Traits = _SimdTraits<_Tp, _Abi>; using _MemberType = typename _Traits::_SimdMember; using _CastType = typename _Traits::_SimdCastType; static constexpr _Tp* _S_type_tag = nullptr; friend typename _Traits::_SimdBase; public: using _Impl = typename _Traits::_SimdImpl; friend _Impl; friend _SimdIntOperators<simd, _Impl, true>; using value_type = _Tp; using reference = _SmartReference<_MemberType, _Impl, value_type>; using mask_type = simd_mask<_Tp, _Abi>; using abi_type = _Abi; static constexpr size_t size() { return __size_or_zero_v<_Tp, _Abi>; } _GLIBCXX_SIMD_CONSTEXPR simd() = default; _GLIBCXX_SIMD_CONSTEXPR simd(const simd&) = default; _GLIBCXX_SIMD_CONSTEXPR simd(simd&&) noexcept = default; _GLIBCXX_SIMD_CONSTEXPR simd& operator=(const simd&) = default; _GLIBCXX_SIMD_CONSTEXPR simd& operator=(simd&&) noexcept = default; // implicit broadcast constructor template <typename _Up, typename = enable_if_t<!is_same_v<__remove_cvref_t<_Up>, bool>>> _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd(_ValuePreservingOrInt<_Up, value_type>&& __x) : _M_data( _Impl::_S_broadcast(static_cast<value_type>(static_cast<_Up&&>(__x)))) {} // implicit type conversion constructor (convert from fixed_size to // fixed_size) template <typename _Up> _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd(const simd<_Up, simd_abi::fixed_size<size()>>& __x, enable_if_t< conjunction< is_same<simd_abi::fixed_size<size()>, abi_type>, negation<__is_narrowing_conversion<_Up, value_type>>, __converts_to_higher_integer_rank<_Up, value_type>>::value, void*> = nullptr) : simd{static_cast<array<_Up, size()>>(__x).data(), vector_aligned} {} // explicit type conversion constructor #ifdef _GLIBCXX_SIMD_ENABLE_STATIC_CAST template <typename _Up, typename _A2, typename = decltype(static_simd_cast<simd>( declval<const simd<_Up, _A2>&>()))> _GLIBCXX_SIMD_ALWAYS_INLINE explicit _GLIBCXX_SIMD_CONSTEXPR simd(const simd<_Up, _A2>& __x) : simd(static_simd_cast<simd>(__x)) {} #endif // _GLIBCXX_SIMD_ENABLE_STATIC_CAST // generator constructor template <typename _Fp> _GLIBCXX_SIMD_ALWAYS_INLINE explicit _GLIBCXX_SIMD_CONSTEXPR simd(_Fp&& __gen, _ValuePreservingOrInt<decltype(declval<_Fp>()( declval<_SizeConstant<0>&>())), value_type>* = nullptr) : _M_data(_Impl::_S_generator(static_cast<_Fp&&>(__gen), _S_type_tag)) {} // load constructor template <typename _Up, typename _Flags> _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd(const _Up* __mem, _IsSimdFlagType<_Flags>) : _M_data( _Impl::_S_load(_Flags::template _S_apply<simd>(__mem), _S_type_tag)) {} // loads [simd.load] template <typename _Up, typename _Flags> _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR void copy_from(const _Vectorizable<_Up>* __mem, _IsSimdFlagType<_Flags>) { _M_data = static_cast<decltype(_M_data)>( _Impl::_S_load(_Flags::template _S_apply<simd>(__mem), _S_type_tag)); } // stores [simd.store] template <typename _Up, typename _Flags> _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR void copy_to(_Vectorizable<_Up>* __mem, _IsSimdFlagType<_Flags>) const { _Impl::_S_store(_M_data, _Flags::template _S_apply<simd>(__mem), _S_type_tag); } // scalar access _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR reference operator[](size_t __i) { return {_M_data, int(__i)}; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR value_type operator[]([[maybe_unused]] size_t __i) const { if constexpr (__is_scalar_abi<_Abi>()) { _GLIBCXX_DEBUG_ASSERT(__i == 0); return _M_data; } else return _M_data[__i]; } // increment and decrement: _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd& operator++() { _Impl::_S_increment(_M_data); return *this; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd operator++(int) { simd __r = *this; _Impl::_S_increment(_M_data); return __r; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd& operator--() { _Impl::_S_decrement(_M_data); return *this; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd operator--(int) { simd __r = *this; _Impl::_S_decrement(_M_data); return __r; } // unary operators (for any _Tp) _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR mask_type operator!() const { return {__private_init, _Impl::_S_negate(_M_data)}; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd operator+() const { return *this; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR simd operator-() const { return {__private_init, _Impl::_S_unary_minus(_M_data)}; } // access to internal representation (suggested extension) _GLIBCXX_SIMD_ALWAYS_INLINE explicit _GLIBCXX_SIMD_CONSTEXPR simd(_CastType __init) : _M_data(__init) {} // compound assignment [simd.cassign] _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd& operator+=(simd& __lhs, const simd& __x) { return __lhs = __lhs + __x; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd& operator-=(simd& __lhs, const simd& __x) { return __lhs = __lhs - __x; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd& operator*=(simd& __lhs, const simd& __x) { return __lhs = __lhs * __x; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd& operator/=(simd& __lhs, const simd& __x) { return __lhs = __lhs / __x; } // binary operators [simd.binary] _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd operator+(const simd& __x, const simd& __y) { return {__private_init, _Impl::_S_plus(__x._M_data, __y._M_data)}; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd operator-(const simd& __x, const simd& __y) { return {__private_init, _Impl::_S_minus(__x._M_data, __y._M_data)}; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd operator*(const simd& __x, const simd& __y) { return {__private_init, _Impl::_S_multiplies(__x._M_data, __y._M_data)}; } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd operator/(const simd& __x, const simd& __y) { return {__private_init, _Impl::_S_divides(__x._M_data, __y._M_data)}; } // compares [simd.comparison] _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type operator==(const simd& __x, const simd& __y) { return simd::_S_make_mask(_Impl::_S_equal_to(__x._M_data, __y._M_data)); } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type operator!=(const simd& __x, const simd& __y) { return simd::_S_make_mask( _Impl::_S_not_equal_to(__x._M_data, __y._M_data)); } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type operator<(const simd& __x, const simd& __y) { return simd::_S_make_mask(_Impl::_S_less(__x._M_data, __y._M_data)); } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type operator<=(const simd& __x, const simd& __y) { return simd::_S_make_mask(_Impl::_S_less_equal(__x._M_data, __y._M_data)); } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type operator>(const simd& __x, const simd& __y) { return simd::_S_make_mask(_Impl::_S_less(__y._M_data, __x._M_data)); } _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend mask_type operator>=(const simd& __x, const simd& __y) { return simd::_S_make_mask(_Impl::_S_less_equal(__y._M_data, __x._M_data)); } // operator?: overloads (suggested extension) {{{ #ifdef __GXX_CONDITIONAL_IS_OVERLOADABLE__ _GLIBCXX_SIMD_ALWAYS_INLINE _GLIBCXX_SIMD_CONSTEXPR friend simd operator?:(const mask_type& __k, const simd& __where_true, const simd& __where_false) { auto __ret = __where_false; _Impl::_S_masked_assign(__data(__k), __data(__ret), __data(__where_true)); return __ret; } #endif // __GXX_CONDITIONAL_IS_OVERLOADABLE__ // }}} // "private" because of the first arguments's namespace _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd(_PrivateInit, const _MemberType& __init) : _M_data(__init) {} // "private" because of the first arguments's namespace _GLIBCXX_SIMD_INTRINSIC simd(_BitsetInit, bitset<size()> __init) : _M_data() { where(mask_type(__bitset_init, __init), *this) = ~*this; } _GLIBCXX_SIMD_INTRINSIC constexpr bool _M_is_constprop() const { if constexpr (__is_scalar_abi<_Abi>()) return __builtin_constant_p(_M_data); else return _M_data._M_is_constprop(); } private: _GLIBCXX_SIMD_INTRINSIC static constexpr mask_type _S_make_mask(typename mask_type::_MemberType __k) { return {__private_init, __k}; } friend const auto& __data<value_type, abi_type>(const simd&); friend auto& __data<value_type, abi_type>(simd&); alignas(_Traits::_S_simd_align) _MemberType _M_data; }; // }}} /// @cond undocumented // __data {{{ template <typename _Tp, typename _Ap> _GLIBCXX_SIMD_INTRINSIC constexpr const auto& __data(const simd<_Tp, _Ap>& __x) { return __x._M_data; } template <typename _Tp, typename _Ap> _GLIBCXX_SIMD_INTRINSIC constexpr auto& __data(simd<_Tp, _Ap>& __x) { return __x._M_data; } // }}} namespace __float_bitwise_operators { //{{{ template <typename _Tp, typename _Ap> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap> operator^(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b) { return {__private_init, _Ap::_SimdImpl::_S_bit_xor(__data(__a), __data(__b))}; } template <typename _Tp, typename _Ap> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap> operator|(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b) { return {__private_init, _Ap::_SimdImpl::_S_bit_or(__data(__a), __data(__b))}; } template <typename _Tp, typename _Ap> _GLIBCXX_SIMD_INTRINSIC _GLIBCXX_SIMD_CONSTEXPR simd<_Tp, _Ap> operator&(const simd<_Tp, _Ap>& __a, const simd<_Tp, _Ap>& __b) { return {__private_init, _Ap::_SimdImpl::_S_bit_and(__data(__a), __data(__b))}; } } // namespace __float_bitwise_operators }}} /// @endcond /// @} _GLIBCXX_SIMD_END_NAMESPACE #endif // __cplusplus >= 201703L #endif // _GLIBCXX_EXPERIMENTAL_SIMD_H // vim: foldmethod=marker foldmarker={{{,}}}